Patents by Inventor Thomas Ruckes

Thomas Ruckes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8471238
    Abstract: Light emitters using nanotubes and methods of making same. A light emitter includes a nanotube article in electrical communication with a first and a second contact, a substrate having a predefined region with a relatively low thermal conductivity said region in predefined physical relation to said nanotube article; and a stimulus circuit in electrical communication with the first and second contacts. The stimulus circuit provides electrical stimulation sufficient to induce light emission from the nanotube article in the proximity of the predefined region. The predefined region is a channel formed in the substrate or a region of material with relatively low thermal conductivity. The light emitter can be integrated with semiconductor circuits including CMOS circuits. The light emitter can be integrated into optical driver circuits (on- and off-chip drivers) and opto-isolators.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: June 25, 2013
    Assignee: Nantero Inc.
    Inventors: Jonathan W. Ward, Mitchell Meinhold, Claude L. Bertin, Benjamin Schlatka, Brent M. Segal, Thomas Ruckes
  • Patent number: 7781862
    Abstract: A two terminal switching device includes first and second conductive terminals and a nanotube article. The article has at least one nanotube, and overlaps at least a portion of each of the first and second terminals. The device also includes a stimulus circuit in electrical communication with at least one of the first and second terminals. The circuit is capable of applying first and second electrical stimuli to at least one of the first and second terminal(s) to change the relative resistance of the device between the first and second terminals between a relatively high resistance and a relatively low resistance. The relatively high resistance between the first and second terminals corresponds to a first state of the device, and the relatively low resistance between the first and second terminals corresponds to a second state of the device.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: August 24, 2010
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Mitchell Meinhold, Steven L. Konsek, Thomas Ruckes, Max Strasburg, Frank Guo, X. M. Henry Huang, Ramesh Sivarajan
  • Publication number: 20080231413
    Abstract: Resistive elements include a patterned region of nanofabric having a predetermined area, where the nanofabric has a selected sheet resistance; and first and second electrical contacts contacting the patterned region of nanofabric and in spaced relation to each other. The resistance of the element between the first and second electrical contacts is determined by the selected sheet resistance of the nanofabric, the area of nanofabric, and the spaced relation of the first and second electrical contacts. The bulk resistance is tunable.
    Type: Application
    Filed: April 29, 2008
    Publication date: September 25, 2008
    Applicant: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Ruckes, Brent M. Segal, Jonathan W. Ward
  • Patent number: 7394687
    Abstract: A non-volatile memory cell includes a volatile storage device that stores a corresponding logic state in response to electrical stimulus; and a shadow memory device coupled to the volatile storage device. The shadow memory device receives and stores the corresponding logic state in response to electrical stimulus. The shadow memory device includes a non-volatile nanotube switch that stores the corresponding state of the shadow device.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: July 1, 2008
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Frank Guo, Thomas Ruckes, Steven L. Konsek, Mitchell Meinhold, Max Strasburg, Ramesh Sivarajan, X. M. H. Huang
  • Patent number: 7365632
    Abstract: Resistive elements include a patterned region of nanofabric having a predetermined area, where the nanofabric has a selected sheet resistance; and first and second electrical contacts contacting the patterned region of nanofabric and in spaced relation to each other. The resistance of the element between the first and second electrical contacts is determined by the selected sheet resistance of the nanofabric, the area of nanofabric, and the spaced relation of the first and second electrical contacts. The bulk resistance is tunable.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: April 29, 2008
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Ruckes, Brent M. Segal, Jonathan W. Ward
  • Publication number: 20080036356
    Abstract: Light emitters using nanotubes and methods of making same. A light emitter includes a nanotube article in electrical communication with a first and a second contact, a substrate having a predefined region with a relatively low thermal conductivity said region in predefined physical relation to said nanotube article; and a stimulus circuit in electrical communication with the first and second contacts. The stimulus circuit provides electrical stimulation sufficient to induce light emission from the nanotube article in the proximity of the predefined region. The predefined region is a channel formed in the substrate or a region of material with relatively low thermal conductivity. The light emitter can be integrated with semiconductor circuits including CMOS circuits. The light emitter can be integrated into optical driver circuits (on- and off-chip drivers) and opto-isolators.
    Type: Application
    Filed: September 15, 2005
    Publication date: February 14, 2008
    Applicant: Nantero, Inc.
    Inventors: Jonathan W. Ward, Mitchell Meinhold, Claude L. Bertin, Benjamin Schlatka, Brent M. Segal, Thomas Ruckes
  • Publication number: 20080012047
    Abstract: A two terminal switching device includes first and second conductive terminals and a nanotube article. The article has at least one nanotube, and overlaps at least a portion of each of the first and second terminals. The device also includes a stimulus circuit in electrical communication with at least one of the first and second terminals. The circuit is capable of applying first and second electrical stimuli to at least one of the first and second terminal(s) to change the relative resistance of the device between the first and second terminals between a relatively high resistance and a relatively low resistance. The relatively high resistance between the first and second terminals corresponds to a first state of the device, and the relatively low resistance between the first and second terminals corresponds to a second state of the device.
    Type: Application
    Filed: November 15, 2005
    Publication date: January 17, 2008
    Applicant: Nantero, Inc.
    Inventors: Claude Bertin, Mitchell Meinhold, Steven Konsek, Thomas Ruckes, Max Strasburg, Frank Guo, X. M. Huang, Ramesh Sivarajan
  • Publication number: 20070236325
    Abstract: Resistive elements include a patterned region of nanofabric having a predetermined area, where the nanofabric has a selected sheet resistance; and first and second electrical contacts contacting the patterned region of nanofabric and in spaced relation to each other. The resistance of the element between the first and second electrical contacts is determined by the selected sheet resistance of the nanofabric, the area of nanofabric, and the spaced relation of the first and second electrical contacts. The bulk resistance is tunable.
    Type: Application
    Filed: September 20, 2005
    Publication date: October 11, 2007
    Applicant: Nantero, Inc.
    Inventors: Claude Bertin, Thomas Ruckes, Brent Segal, Jonathan Ward
  • Patent number: 7245520
    Abstract: A random access memory cell includes first and second nanotube switching elements and an electronic memory with cross-coupled first and second inverters. Each nanotube switching element includes a nanotube channel element having at least one electrically conductive nanotube, and a set electrode and a release electrode disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel between a channel electrode and an output node. Input nodes of the first and second inverters are coupled to the set electrodes and the output nodes of the first and second nanotube switching elements. The cell can operate as a normal electronic memory, or in a shadow memory or store mode to transfer the electronic memory state to the nanotube switching elements. The device may later be operated in a recall mode to transfer the state of the nanotube switching elements to the electronic memory.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: July 17, 2007
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Ruckes, Brent M. Segal
  • Publication number: 20070127285
    Abstract: Random access memory including nanotube switching elements. A memory cell includes first and second nanotube switching elements and an electronic memory. Each nanotube switching element includes an output node, a nanotube channel element having at least one electrically conductive nanotube, and a control structure having a set electrode and a release electrode disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel between said channel electrode and said output node. The electronic memory has cross-coupled first and second inverters. The input node of the first inverter is coupled to the set electrode of the first nanotube switching element and to the output node of the second nanotube switching element. The input node of the of the second inverter is coupled to the set electrode of the second nanotube switching element and to the output node of the first nanotube switching element; and the channel electrode is coupled to a channel voltage line.
    Type: Application
    Filed: September 20, 2005
    Publication date: June 7, 2007
    Applicant: Nantero, Inc.
    Inventors: Claude Bertin, Thomas Ruckes, Brent Segal