Patents by Inventor Thomas S. Kirchhoff

Thomas S. Kirchhoff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170255200
    Abstract: A method for maneuvering a marine vessel powered by a propulsion system includes accepting inputs to an electronic navigation device and generating a desired track based on the inputs. The desired track includes a series of waypoints, each waypoint in the series of waypoints being associated with a respective heading. The method also includes sending position and orientation information corresponding to each waypoint and its associated heading to a control module. Based on the position and orientation information, the control module generates steering and thrust commands that are required to maneuver the marine vessel from a current waypoint and heading in the series to a following waypoint and heading in the series. According to the steering and thrust commands, the propulsion system thereafter propels the marine vessel along the desired track to each waypoint and its associated heading in succession. A corresponding system is also disclosed.
    Type: Application
    Filed: January 26, 2017
    Publication date: September 7, 2017
    Applicant: Brunswick Corporation
    Inventors: Jason S. Arbuckle, Thomas S. Kirchhoff, Michael J. Lemancik, Walter B. Ross, Robert M. Hackbarth, Mark W. Henker, Steven L. Van Camp
  • Patent number: 9493220
    Abstract: Systems and methods are for controlling shift in a marine propulsion device. A shift sensor outputs a position signal representing a current position of a shift linkage. A control circuit is programmed to identify an impending shift change when the position signal reaches a first threshold and an actual shift change when the position signal reaches a second threshold. The control circuit is programmed to enact a shift interrupt control strategy that facilitates the actual shift change when the position signal reaches the first threshold, and to actively modify the first threshold as a change in operation of the marine propulsion device occurs.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: November 15, 2016
    Assignee: Brunswick Corporation
    Inventors: Thomas S. Kirchhoff, David G. Camp
  • Patent number: 9377780
    Abstract: A method for determining a heading value of a marine vessel includes determining a first estimate of a direction of the marine vessel based on information from a first source and determining a second estimate of a direction of the marine vessel based on information from a second source. The method includes inputting the first estimate and the second estimate to a control circuit, which scales each of the first estimate and the second estimate and adds the scaled estimates together so as to determine the heading value. A system for determining a heading value of a marine vessel is also disclosed.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: June 28, 2016
    Assignee: Brunswick Corporation
    Inventors: Jason S. Arbuckle, Matthew W. Snyder, Thomas S. Kirchhoff
  • Patent number: 9284032
    Abstract: A control system and method for deterring theft of a marine vessel. A security control circuit receives a transponder identification code from a transponder. The engine control circuit has a status that is based on a comparison of a stored identification code with the transponder identification code. The status of the engine control circuit is locked if the stored identification code does not match the transponder identification code and the status of the engine control circuit is unlocked if the stored identification code does match the transponder identification code. The security control circuit determines an arbitrated lock status of the control system based on a conjunctive analysis of the locked and unlocked statuses of a plurality of engine control circuits connected to a network bus, and indicates the arbitrated lock status to an operator of the marine vessel.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: March 15, 2016
    Assignee: Brunswick Corporation
    Inventors: Matthew W. Snyder, Thomas S. Kirchhoff
  • Patent number: 9248898
    Abstract: A system that controls the speed of a marine vessel includes first and second propulsion devices that produce first and second thrusts to propel the marine vessel. A control circuit controls orientation of the first and second propulsion devices about respective steering axes to control directions of the first and second thrusts. A first user input device is moveable between a neutral position and a non-neutral detent position. When a second user input device is actuated while the first user input device is in the detent position, the control circuit does one or more of the following so as to control the speed of the marine vessel: varies a speed of a first engine of the first propulsion device and a speed of a second engine of the second propulsion device; and varies one or more alternative operating conditions of the first and second propulsion devices.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: February 2, 2016
    Assignee: Brunswick Corporation
    Inventors: Thomas S. Kirchhoff, Jason S. Arbuckle, Matthew W. Snyder
  • Patent number: 9156536
    Abstract: A system and method is provided for efficiently changing controlled engine speed of a marine internal combustion engine in a marine propulsion system for propelling a marine vessel. The system responds to the operator changing the operator-selected engine speed, from a first-selected engine speed to a second-selected engine speed, by predicting throttle position needed to provide the second-selected engine speed, and providing a feed forward signal moving the throttle to the predicted throttle position, without waiting for a slower responding PID controller and/or overshoot thereof, and concomitant instability or oscillation, and then uses the engine speed control system including any PID controller to maintain engine speed at the second-selected engine speed.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: October 13, 2015
    Assignee: Brunswick Corporation
    Inventors: Jason S. Arbuckle, Matthew W. Snyder, Thomas S. Kirchhoff
  • Patent number: 9043058
    Abstract: Methods and systems are for facilitating shift changes in a marine propulsion device having an internal combustion engine and a shift linkage that operatively connects a shift control lever to a transmission for effecting shift changes amongst a reverse gear, a neutral gear and a forward gear. A position sensor senses position of the shift linkage. A speed sensor senses speed of the engine. A control circuit compares the speed of the engine to a stored engine speed and modifies, based upon the position of the shift linkage when the speed of the engine reaches the stored engine speed, a neutral state threshold that determines when the control circuit ceases reducing the speed of the engine to facilitate a shift change.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: May 26, 2015
    Assignee: Brunswick Corporation
    Inventors: David G. Camp, Thomas S. Kirchhoff
  • Patent number: 9039468
    Abstract: A system that controls speed of a marine vessel includes first and second propulsion devices that produce first and second thrusts to propel the marine vessel. A control circuit controls orientation of the propulsion devices between an aligned position in which the thrusts are parallel and an unaligned position in which the thrusts are non-parallel. A first user input device is moveable between a neutral position and a non-neutral detent position. When the first user input device is in the detent position and the propulsion devices are in the aligned position, the thrusts propel the marine vessel in a desired direction at a first speed. When a second user input device is actuated while the first user input device is in the detent position, the propulsion devices move into the unaligned position and propel the marine vessel in the desired direction at a second, decreased speed without altering the thrusts.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: May 26, 2015
    Assignee: Brunswick Corporation
    Inventors: Jason S. Arbuckle, Thomas S. Kirchhoff, Matthew W. Snyder
  • Publication number: 20150112521
    Abstract: Systems and methods are for controlling shift in a marine propulsion device. A shift sensor outputs a position signal representing a current position of a shift linkage. A control circuit is programmed to identify an impending shift change when the position signal reaches a first threshold and an actual shift change when the position signal reaches a second threshold. The control circuit is programmed to enact a shift interrupt control strategy that facilitates the actual shift change when the position signal reaches the first threshold, and to actively modify the first threshold as a change in operation of the marine propulsion device occurs.
    Type: Application
    Filed: December 31, 2014
    Publication date: April 23, 2015
    Applicant: BRUNSWICK CORPORATION
    Inventors: Thomas S. Kirchhoff, David G. Camp
  • Patent number: 8961246
    Abstract: Systems and methods are for controlling shift in a marine propulsion device. A shift sensor outputs a position signal representing a current position of a shift linkage. A control circuit is programmed to identify an impending shift change when the position signal reaches a first threshold and an actual shift change when the position signal reaches a second threshold. The control circuit is programmed to enact a shift interrupt control strategy that facilitates the actual shift change when the position signal reaches the first threshold, and to actively modify the first threshold as a change in operation of the marine propulsion device occurs.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: February 24, 2015
    Assignee: Brunswick Corporation
    Inventors: Thomas S. Kirchhoff, David G. Camp
  • Patent number: 8924054
    Abstract: Systems and methods are for orienting a marine vessel having a marine propulsion device. A control circuit controls operation of the marine propulsion device. A user input device inputs to the control circuit a user-desired global position and a user-desired heading of the marine vessel. The control circuit calculates a position difference between the user-desired global position and an actual global position of the marine vessel and controls the marine propulsion device to minimize the position difference. The control circuit controls the marine propulsion device to orient an actual heading of the marine vessel towards the user-desired global position when the position difference is greater than a threshold. When the position difference is less than the threshold, the control circuit controls the marine propulsion device to minimize a difference between the actual heading and the user-desired heading while minimizing the position difference.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: December 30, 2014
    Assignee: Brunswick Corporation
    Inventors: Jason S. Arbuckle, Thomas S. Kirchhoff, Matthew W. Snyder, Kenneth G. Gable
  • Patent number: 8818587
    Abstract: Methods and systems are for controlling movement of at least one propulsion unit on a marine vessel. The method comprises plotting a first plurality of points representing a first surface of a first propulsion unit and plotting a second plurality of points representing a second surface. The method further comprises limiting movement of at least the first propulsion unit such that the first surface does not come within a predetermined distance of the second surface during said movement.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: August 26, 2014
    Assignee: Brunswick Corporation
    Inventors: Jason S. Arbuckle, Thomas S. Kirchhoff, Kenneth G. Gable
  • Patent number: 8808139
    Abstract: A marine propulsion system has a propulsor that propels a marine vessel, an internal combustion engine that powers the propulsor via a driveshaft, a clutch that is movable between a closed position wherein the engine is operationally connected to the driveshaft and an open position wherein the engine is operationally disconnected from the driveshaft, and an electric motor that selectively applies torque on the driveshaft. A control circuit is programmed to move the clutch into the open position; and to cause the motor to selectively apply a load torque on the driveshaft, to thereby dislodge the clutch from the closed position. The control circuit can also be programmed to compare rotational speeds of the engine and motor to thereby determine whether the clutch is in one of the open and closed positions.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: August 19, 2014
    Assignee: Brunswick Corporation
    Inventors: Jason S. Arbuckle, Wayne M. Jaszewski, Thomas S. Kirchhoff
  • Patent number: 8762022
    Abstract: A system and method is provided for efficiently changing controlled engine speed of a marine internal combustion engine in a marine propulsion system for propelling a marine vessel. The system responds to the operator changing the operator-selected engine speed, from a first-selected engine speed to a second-selected engine speed, by predicting throttle position needed to provide the second-selected engine speed, and providing a feed forward signal moving the throttle to the predicted throttle position, without waiting for a slower responding PID controller and/or overshoot thereof, and concomitant instability or oscillation, and then uses the engine speed control system including any PID controller to maintain engine speed at the second-selected engine speed.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: June 24, 2014
    Assignee: Brunswick Corporation
    Inventors: Jason S. Arbuckle, Matthew W. Snyder, Thomas S. Kirchhoff
  • Patent number: 8725390
    Abstract: Systems and methods for optimizing fuel injection in an internal combustion engine adjust start of fuel injection by calculating whether one of advancing or retarding start of fuel injection will provide a shortest path from a source angle to a destination angle. Based on the source angle and a given injection pulse width and angle increment, it is determined whether fuel injection will overlap with a specified engine event if start of fuel injection is moved in a direction of the shortest path. A control circuit increments start fuel injection in the direction of the shortest path if it is determined that fuel injection will not overlap with the specified engine event, or increments start fuel injection in a direction opposite that of the shortest path if it is determined that fuel injection will overlap with the specified engine event.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: May 13, 2014
    Assignee: Brunswick Corporation
    Inventors: Matthew W. Snyder, Thomas S. Kirchhoff, David G. Camp
  • Patent number: 8725329
    Abstract: Systems and methods are for controlling of a hybrid propulsion system for a marine vessel. A control circuit controls an electric motor-generator according to at least two modes, including a first mode wherein the electric motor-generator receives power from a battery and rotates a driveshaft to drive a propulsor and a second mode wherein the electric motor-generator generates power to charge the battery based upon torque from an internal combustion engine. A time criteria and at least one user-desired operational characteristic of at least one of the internal combustion engine, electric motor-generator, and battery are input to the control circuit. Based on the time criteria and user-desired operational characteristic, the control circuit calculates a schedule for at least one of charging the battery with the electric motor-generator and discharging the battery to a house load of the marine vessel. The control circuit further controls operation of the electric motor-generator according to the schedule.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: May 13, 2014
    Assignee: Brunswick Corporation
    Inventors: Matthew W. Snyder, Thomas S. Kirchhoff, Jason S. Arbuckle
  • Patent number: 6845312
    Abstract: A method for processing knock-related data reduces the memory locations required for the method and also simplify the processing steps needed to determine a sum, average, and threshold value relating to magnitudes of knock ratios. Inputs from either pressure sensor or accelerometers are filtered and then used to form a ratio between a knock portion of a curve and a reference portion. Sequential magnitudes of the knock ratio are received and analyzed in a manner that reduces required memory locations and improves processing speed.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: January 18, 2005
    Assignee: Brunswick Corporation
    Inventors: Travis A. Cross, Jason Tartt, Thomas S. Kirchhoff