Patents by Inventor Thomas S. Wilson

Thomas S. Wilson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11958932
    Abstract: This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: April 16, 2024
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Thomas S. Wilson, Michael Keith Hearon, Jane P. Bearinger
  • Patent number: 11958220
    Abstract: Polymeric based closed cell foams, such as shape memory polymer foams, contain bubbles. Making these bubbles continuous is called reticulation. Disclosed are embodiments of a device and method to controllably reticulate polymer-based closed cell foams by puncturing the membranes of these polymer-based closed cell foams.
    Type: Grant
    Filed: October 31, 2022
    Date of Patent: April 16, 2024
    Assignees: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Jennifer N. Rodriguez, Duncan J. Maitland, Thomas S. Wilson
  • Patent number: 11945151
    Abstract: An additive manufacturing apparatus includes an additive manufacturing print head and a nozzle that receives a bio-based shape memory polymer material and a bio-based material. The nozzle extrudes the bio-based shape memory polymer material and the bio-based material onto a substrate to form a bio-based shape memory polymer part or product.
    Type: Grant
    Filed: August 16, 2022
    Date of Patent: April 2, 2024
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jennifer Nicole Rodriguez, Eric B. Duoss, James Lewicki, Christopher Spadaccini, Thomas S. Wilson, Cheng Zhu
  • Patent number: 11911523
    Abstract: An embodiment includes a wound dressing comprising: a shape memory polymer (SMP) foam, including open cells, having first and second states; and a hydrogel (HG) included within the cells; wherein (a) in a first position a composite, including the SMP foam and the HG, is configured to be located proximate a hemorrhagic tissue with the SMP foam in the first state; (b) in a second position the composite is configured to be expanded to the second state against the hemorrhagic tissue when the SMP foam is plasticized at 37° C. depressing a glass transition temperature (Tg) of the SMP foam to below 25° C. Other embodiments are described herein.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: February 27, 2024
    Assignees: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Duncan J. Maitland, Todd Lawrence Landsman, Tyler Joseph Touchet, Elizabeth L Cosgriff-Hernandez, Thomas S. Wilson
  • Publication number: 20240008875
    Abstract: An embodiment of the invention includes an expandable implant to endovascularly embolize an anatomical void or malformation, such as an aneurysm. An embodiment is comprised of a chain or linked sequence of expandable polymer foam elements. Another embodiment includes an elongated length of expandable polymer foam coupled to a backbone. Another embodiment includes a system for endovascular delivery of an expandable implant (e.g., shape memory polymer) to embolize an aneurysm. The system may include a microcatheter, a lumen-reducing collar coupled to the distal tip of the microcatheter, a flexible pushing element detachably coupled to an expandable implant, and a flexible tubular sheath inside of which the compressed implant and pushing element are pre-loaded. Other embodiments are described herein.
    Type: Application
    Filed: September 19, 2023
    Publication date: January 11, 2024
    Inventors: Thomas S. Wilson, Ward Small, IV, William J. Benett, Jason M. Ortega, Duncan J. Maitland, Jonathan Hartman
  • Patent number: 11866594
    Abstract: In accordance with one aspect of the presently disclosed inventive concepts, a product includes a porous three-dimensional (3D) printed polymer structure having elastomeric shape memory, where the structure includes a material comprising a plurality of gas-filled microballoons. The 3D printed polymer structure has hierarchical porosity.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: January 9, 2024
    Assignees: Lawrence Livermore National Security, LLC
    Inventors: Amanda Wu, Taylor Maxwell Bryson, Eric Duoss, Thomas R. Metz, Ward Small, Thomas S. Wilson, Stephanie Schulze, Emily Cheng
  • Patent number: 11864989
    Abstract: A system comprising first, second, and third shape memory polymers (SMPs); wherein (a) the first SMP is a biodegradable open cell foam that includes a first channel; (b) the second SMP includes a second channel and is included in the first channel; (c) the foam is in a first state and is configured to expand to a second state, radially outward from the second foam, in response to thermal stimulus; (d) the third SMP is between the first and second SMPs and includes a stent having a first strut that includes the third SMP and a second strut that includes the third SMP; and (e) each of the first, second, and third SMPs is coupled to a wire.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: January 9, 2024
    Assignees: Lawrence Livermore National Security, LLC, The Regents of the University of California
    Inventors: Thomas S. Wilson, Duncan J. Maitland, Ward Small, IV, Patrick R. Buckley, William J. Benett, Jonathan Hartman, David Saloner
  • Publication number: 20230383131
    Abstract: A product includes a three-dimensional printed polymer structure formed from at least one filament. The three-dimensional printed polymer structure has a plurality of layers arranged in a geometric pattern, the layers being formed from the at least one filament, where the at least one filament comprises a polysiloxane material having a plurality of closed cell pores formed therein.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 30, 2023
    Inventors: Andrew Neil Mabe, Eric B. Duoss, Jeremy Lenhardt, Du Nguyen, Thomas S. Wilson, Alexandra Golobic
  • Patent number: 11820852
    Abstract: New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: November 21, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Thomas S. Wilson, Jane P. Bearinger
  • Patent number: 11771435
    Abstract: An embodiment of the invention includes an expandable implant to endovascularly embolize an anatomical void or malformation, such as an aneurysm. An embodiment is comprised of a chain or linked sequence of expandable polymer foam elements. Another embodiment includes an elongated length of expandable polymer foam coupled to a backbone. Another embodiment includes a system for endovascular delivery of an expandable implant (e.g., shape memory polymer) to embolize an aneurysm. The system may include a microcatheter, a lumen-reducing collar coupled to the distal tip of the microcatheter, a flexible pushing element detachably coupled to an expandable implant, and a flexible tubular sheath inside of which the compressed implant and pushing element are pre-loaded. Other embodiments are described herein.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: October 3, 2023
    Assignees: Lawrence Livermore National Security, LLC, The Texas A&M University System
    Inventors: Thomas S. Wilson, Ward Small, IV, William J. Benett, Jason M. Ortega, Duncan J. Maitland, Jonathan Hartman
  • Patent number: 11725112
    Abstract: The silicone-based ink for additive manufacturing includes a siloxane macromer, and a porogen mixture comprising a water-soluble porogen and a surfactant. The product of additive manufacturing with a silicone-based ink includes a three-dimensional printed structure including a plurality of continuous filaments arranged in a predefined pattern and a plurality of inter-filament pores defined by the predefined pattern of the continuous filaments. In addition, each continuous filament of the three-dimensional printed structure includes a silicone matrix having an open cell structure with a plurality of intra-filament pores, and the intra-filament pores form continuous channels through the silicone matrix.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: August 15, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Du Nguyen, Eric Duoss, Jeremy Lenhardt, Thomas S. Wilson
  • Publication number: 20230250303
    Abstract: The silicone-based ink for additive manufacturing includes a siloxane macromer, and a porogen mixture comprising a water-soluble porogen and a surfactant. The product of additive manufacturing with a silicone-based ink includes a three-dimensional printed structure including a plurality of continuous filaments arranged in a predefined pattern and a plurality of inter-filament pores defined by the predefined pattern of the continuous filaments. In addition, each continuous filament of the three-dimensional printed structure includes a silicone matrix having an open cell structure with a plurality of intra-filament pores, and the intra-filament pores form continuous channels through the silicone matrix.
    Type: Application
    Filed: March 31, 2023
    Publication date: August 10, 2023
    Inventors: Du Nguyen, Eric Duoss, Jeremy Lenhardt, Thomas S. Wilson
  • Publication number: 20230141620
    Abstract: This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.
    Type: Application
    Filed: December 16, 2022
    Publication date: May 11, 2023
    Inventors: Thomas S. Wilson, Michael Keith Hearon, Jane P. Bearinger
  • Publication number: 20230098681
    Abstract: An embodiment includes a system comprising: a monolithic shape memory polymer (SMP) foam having first and second states; wherein the SMP foam includes: (a) polyurethane, (b) an inner half portion having inner reticulated cells defined by inner struts, (c) an outer half portion, having outer reticulated cells defined by outer struts, surrounding the inner portion in a plane that provides a cross-section of the SMP foam, (d) hydroxyl groups chemically bound to outer surfaces of both the inner and outer struts. Other embodiments are discussed herein.
    Type: Application
    Filed: September 29, 2022
    Publication date: March 30, 2023
    Inventors: Landon D. Nash, Duncan J. Maitland, Nicole Docherty, Thomas S. Wilson, Ward Small, IV, Jason Ortega, Pooja Singhal
  • Publication number: 20230093592
    Abstract: Polymeric based closed cell foams, such as shape memory polymer foams, contain bubbles. Making these bubbles continuous is called reticulation. Disclosed are embodiments of a device and method to controllably reticulate polymer-based closed cell foams by puncturing the membranes of these polymer-based closed cell foams.
    Type: Application
    Filed: October 31, 2022
    Publication date: March 23, 2023
    Inventors: Jennifer N. Rodriguez, Duncan J. Maitland, Thomas S. Wilson
  • Publication number: 20230029649
    Abstract: New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling Chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
    Type: Application
    Filed: September 22, 2022
    Publication date: February 2, 2023
    Inventors: Thomas S. Wilson, Jane P. Bearinger
  • Publication number: 20230030468
    Abstract: New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
    Type: Application
    Filed: September 22, 2022
    Publication date: February 2, 2023
    Inventors: Thomas S. Wilson, Jane P. Bearinger
  • Publication number: 20220402194
    Abstract: An additive manufacturing apparatus includes an additive manufacturing print head and a nozzle that receives a bio-based shape memory polymer material and a bio-based material. The nozzle extrudes the bio-based shape memory polymer material and the bio-based material onto a substrate to form a bio-based shape memory polymer part or product.
    Type: Application
    Filed: August 16, 2022
    Publication date: December 22, 2022
    Inventors: Jennifer Nicole Rodriguez, Eric B. Duoss, James Lewicki, Christopher Spadaccini, Thomas S. Wilson, Cheng Zhu
  • Patent number: 11530291
    Abstract: This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: December 20, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Thomas S. Wilson, Michael Keith Hearon, Jane P. Bearinger
  • Patent number: 11459439
    Abstract: An embodiment includes a system comprising: a monolithic shape memory polymer (SMP) foam having first and second states; wherein the SMP foam includes: (a) polyurethane, (b) an inner half portion having inner reticulated cells defined by inner struts, (c) an outer half portion, having outer reticulated cells defined by outer struts, surrounding the inner portion in a plane that provides a cross-section of the SMP foam, (d) hydroxyl groups chemically bound to outer surfaces of both the inner and outer struts. Other embodiments are discussed herein.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: October 4, 2022
    Assignees: Lawrence Livermore National Security, LLC, The Texas A&M University System
    Inventors: Landon D. Nash, Duncan J. Maitland, Nicole Docherty, Thomas S. Wilson, Ward Small, IV, Jason Ortega, Pooja Singhal