Patents by Inventor Thomas Samuel Elliot

Thomas Samuel Elliot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230293028
    Abstract: Disclosed are devices and methods for estimating blood pressure, which implement a pulse-transit-time-based blood pressure model that can be calibrated. Some implementations provide reliable and user friendly means for calibrating the blood pressure model using blood pressure perturbation methods and multiple sensors.
    Type: Application
    Filed: February 27, 2023
    Publication date: September 21, 2023
    Inventors: Alexandros A. Pantelopoulos, Thomas Samuel Elliot, Logan Niehaus
  • Patent number: 11642077
    Abstract: Sleep tracking systems and techniques for monitoring two or more co-sleepers in a single bed are disclosed. Such systems and techniques may incorporate sleeper identification, as well as various non-user-specific aspects. Some implementations may incorporate user-specific or user-tailored alarm functionality.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: May 9, 2023
    Assignee: FITBIT, INC.
    Inventors: Juan Ignacio Correa Ramírez, Conor Joseph Heneghan, Lindsey Michelle Sunden, Lin Yang, Lukas Bielskis, Thomas Samuel Elliot, Benjamin B. Perkins, Priya Vijay Sheth, Jose Roberto Melgoza, Nicholas Adrian Myers, Chris H. Sarantos, Andrew Larsen Axley, Jaydip Das, Samuel Barry Tellman, Man-Chi Liu, Jeffrey Andrew Fisher
  • Patent number: 11589758
    Abstract: Disclosed are devices and methods for estimating blood pressure, which implement a pulse-transit-time-based blood pressure model that can be calibrated. Some implementations provide reliable and user friendly means for calibrating the blood pressure model using blood pressure perturbation methods and multiple sensors.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: February 28, 2023
    Assignee: Fitbit, Inc.
    Inventors: Alexandros A. Pantelopoulos, Thomas Samuel Elliot, Logan Niehaus
  • Publication number: 20200178887
    Abstract: Sleep tracking systems and techniques for monitoring two or more co-sleepers in a single bed are disclosed. Such systems and techniques may incorporate sleeper identification, as well as various non-user-specific aspects. Some implementations may incorporate user-specific or user-tailored alarm functionality.
    Type: Application
    Filed: April 28, 2017
    Publication date: June 11, 2020
    Inventors: Juan Ignacio Correa Ramírez, Conor Joseph Heneghan, Lindsey Michelle Sunden, Lin Yang, Lukas Bielskis, Thomas Samuel Elliot, Benjamin B. Perkins, Priya Vijay Sheth, Jose Roberto Melgoza, Nicholas Adrian Myers, Chris H. Sarantos, Andrew Larsen Axley, Jaydip Das, Samuel Barry Tellman, Man-Chi Liu, Jeffrey Andrew Fisher
  • Patent number: 10512407
    Abstract: One innovative aspect is directed to heart rate data collection. In some implementations, a circuit includes a light detector for generating a first electrical signal based on received light. The circuit includes a switching circuit, having a first and a second configuration, configured to receive a first voltage signal based on the first electrical signal and to switch among the first and the second configurations. The circuit includes first and second sampling circuits for sampling a value of the first voltage signal when the switching circuit is in the first configuration and second configurations, respectively. The circuit includes an ambient light cancellation circuit for generating a current signal to counter a first component of the first electrical signal when the first switching circuit is in the first configuration.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: December 24, 2019
    Assignee: Fitbit, Inc.
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen
  • Publication number: 20170209053
    Abstract: Disclosed are devices and methods for estimating blood pressure, which implement a pulse-transit-time-based blood pressure model that can be calibrated. Some implementations provide reliable and user friendly means for calibrating the blood pressure model using blood pressure perturbation methods and multiple sensors.
    Type: Application
    Filed: January 24, 2017
    Publication date: July 27, 2017
    Inventors: Alexandros A. Pantelopoulos, Thomas Samuel Elliot, Logan Niehaus
  • Patent number: 9662053
    Abstract: In some implementations, a device includes light emitter(s) to emit first light having a first wavelength and second light having a second wavelength. The device also includes light detector(s) to generate a first electrical signal while the light emitter emits the first light, a second electrical signal while the light emitter emits the second light, and a third electrical signal while the light emitter is not emitting light. The device also includes ambient light cancellation circuit(s) to generate a countering signal to counter a portion of one or both of the first and second electrical signals based on the third electrical signal. The device also includes analog to digital converter(s) to generate first and second digital signals based on values of the first and second electrical signals, respectively. The device further includes a controller to determine a saturation of peripheral oxygen metric based on the first and second digital signals.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: May 30, 2017
    Assignee: Fitbit, Inc.
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen
  • Publication number: 20170020408
    Abstract: Techniques for measuring ion related metrics at a user's skin surface are disclosed. In one aspect, a method for operating a wearable device may involve determining, based on output of one or more ion selective field effect transistor sensors, various physiological conditions such as a state of hydration, a state of skin health, or the cleanliness of the wearable device or an associated garment.
    Type: Application
    Filed: September 30, 2016
    Publication date: January 26, 2017
    Inventors: Aaron Alexander Rowe, Thomas Samuel Elliot, Javier L. Prieto
  • Publication number: 20170023519
    Abstract: Techniques for measuring ion related metrics at a user's skin surface are disclosed. In one aspect, a method for operating a wearable device may involve determining, based on output of one or more ion selective field effect transistor sensors, various physiological conditions such as a state of hydration, a state of skin health, or the cleanliness of the wearable device or an associated garment.
    Type: Application
    Filed: September 30, 2016
    Publication date: January 26, 2017
    Inventors: Aaron Alexander Rowe, Thomas Samuel Elliot, Javier L. Prieto
  • Publication number: 20170023518
    Abstract: Techniques for measuring ion related metrics at a user's skin surface are disclosed. In one aspect, a method for operating a wearable device may involve determining, based on output of one or more ion selective field effect transistor sensors, various physiological conditions such as a state of hydration, a state of skin health, or the cleanliness of the wearable device or an associated garment.
    Type: Application
    Filed: September 30, 2016
    Publication date: January 26, 2017
    Inventors: Aaron Alexander Rowe, Thomas Samuel Elliot, Javier L. Prieto
  • Publication number: 20160310049
    Abstract: Techniques for measuring ion related metrics at a user's skin surface are disclosed. In one aspect, a method for operating a wearable device may involve determining, based on output of one or more ion selective field effect transistor sensors, various physiological conditions such as a state of hydration, a state of skin health, or the cleanliness of the wearable device or an associated garment.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Inventors: Aaron Alexander Rowe, Thomas Samuel Elliot, Javier L. Prieto
  • Publication number: 20160302706
    Abstract: In some implementations, a device includes light emitter(s) to emit first light having a first wavelength and second light having a second wavelength. The device also includes light detector(s) to generate a first electrical signal while the light emitter emits the first light, a second electrical signal while the light emitter emits the second light, and a third electrical signal while the light emitter is not emitting light. The device also includes ambient light cancellation circuit(s) to generate a countering signal to counter a portion of one or both of the first and second electrical signals based on the third electrical signal. The device also includes analog to digital converter(s) to generate first and second digital signals based on values of the first and second electrical signals, respectively. The device further includes a controller to determine a saturation of peripheral oxygen metric based on the first and second digital signals.
    Type: Application
    Filed: June 28, 2016
    Publication date: October 20, 2016
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen
  • Patent number: 9402552
    Abstract: One innovative aspect is directed to heartrate data collection. In some implementations, a circuit includes a light detector for generating a detected signal based on received light. The circuit includes a switching circuit configured to receive a first signal based on the detected signal and to switch among a first and a second configuration. In some implementations, the circuit includes a first and a second sampling circuit for sampling a value of the first signal when the switching circuit is in the first configuration and second configurations, respectively. In some implementations, the circuit includes an ambient light cancellation circuit for countering a first component of the first signal while the first switching circuit is in the first configuration. In some implementations, the circuit includes an adjustable gain circuit for adjusting a gain of the first signal while the first switching circuit is in the first configuration.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: August 2, 2016
    Assignee: Fitbit, Inc.
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen
  • Publication number: 20160183818
    Abstract: One innovative aspect is directed to heartrate data collection. In some implementations, a circuit includes a light detector for generating a detected signal based on received light. The circuit includes a switching circuit configured to receive a first signal based on the detected signal and to switch among a first and a second configuration. In some implementations, the circuit includes a first and a second sampling circuit for sampling a value of the first signal when the switching circuit is in the first configuration and second configurations, respectively. In some implementations, the circuit includes an ambient light cancellation circuit for countering a first component of the first signal while the first switching circuit is in the first configuration. In some implementations, the circuit includes an adjustable gain circuit for adjusting a gain of the first signal while the first switching circuit is in the first configuration.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 30, 2016
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen
  • Patent number: 9282902
    Abstract: One innovative aspect is directed to heartrate data collection. In some implementations, a circuit includes a light detector for generating a detected signal based on received light. The circuit includes a switching circuit configured to receive a first signal based on the detected signal and to switch among a first and a second configuration. In some implementations, the circuit includes a first and a second sampling circuit for sampling a value of the first signal when the switching circuit is in the first configuration and second configurations, respectively. In some implementations, the circuit includes an ambient light cancellation circuit for countering a first component of the first signal while the first switching circuit is in the first configuration. In some implementations, the circuit includes an adjustable gain circuit for adjusting a gain of the first signal while the first switching circuit is in the first configuration.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: March 15, 2016
    Assignee: Fitbit, Inc.
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen
  • Publication number: 20150223708
    Abstract: One innovative aspect is directed to heartrate data collection. In some implementations, a circuit includes a light detector for generating a detected signal based on received light. The circuit includes a switching circuit configured to receive a first signal based on the detected signal and to switch among a first and a second configuration. In some implementations, the circuit includes a first and a second sampling circuit for sampling a value of the first signal when the switching circuit is in the first configuration and second configurations, respectively. In some implementations, the circuit includes an ambient light cancellation circuit for countering a first component of the first signal while the first switching circuit is in the first configuration. In some implementations, the circuit includes an adjustable gain circuit for adjusting a gain of the first signal while the first switching circuit is in the first configuration.
    Type: Application
    Filed: April 22, 2015
    Publication date: August 13, 2015
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen
  • Publication number: 20150173631
    Abstract: One innovative aspect is directed to heart rate data collection. In some implementations, a circuit includes a light detector for generating a first electrical signal based on received light. The circuit includes a switching circuit, having a first and a second configuration, configured to receive a first voltage signal based on the first electrical signal and to switch among the first and the second configurations. The circuit includes first and second sampling circuits for sampling a value of the first voltage signal when the switching circuit is in the first configuration and second configurations, respectively. The circuit includes an ambient light cancellation circuit for generating a current signal to counter a first component of the first electrical signal when the first switching circuit is in the first configuration.
    Type: Application
    Filed: March 6, 2015
    Publication date: June 25, 2015
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen
  • Patent number: 9044149
    Abstract: One innovative aspect is directed to heart rate data collection. In some implementations, a circuit includes a light detector for generating a first electrical signal based on received light. The circuit includes a switching circuit, having a first and a second configuration, configured to receive a first voltage signal based on the first electrical signal and to switch among the first and the second configurations. The circuit includes first and second sampling circuits for sampling a value of the first voltage signal when the switching circuit is in the first configuration and second configurations, respectively. The circuit includes an ambient light cancellation circuit for generating a current signal to counter a first component of the first electrical signal when the first switching circuit is in the first configuration.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: June 2, 2015
    Assignee: Fitbit, Inc.
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen
  • Patent number: 9014790
    Abstract: One innovative aspect is directed to heart rate data collection. In some implementations, a circuit includes a light detector for generating a first electrical signal based on received light. The circuit includes a switching circuit, having a first and a second configuration, configured to receive a first voltage signal based on the first electrical signal and to switch among the first and the second configurations. The circuit includes first and second sampling circuits for sampling a value of the first voltage signal when the switching circuit is in the first configuration and second configurations, respectively. The circuit includes an ambient light cancellation circuit for generating a current signal to counter a first component of the first electrical signal when the first switching circuit is in the first configuration.
    Type: Grant
    Filed: May 31, 2014
    Date of Patent: April 21, 2015
    Assignee: Fitbit, Inc.
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen
  • Publication number: 20140358012
    Abstract: One innovative aspect is directed to heart rate data collection. In some implementations, a circuit includes a light detector for generating a first electrical signal based on received light. The circuit includes a switching circuit, having a first and a second configuration, configured to receive a first voltage signal based on the first electrical signal and to switch among the first and the second configurations. The circuit includes first and second sampling circuits for sampling a value of the first voltage signal when the switching circuit is in the first configuration and second configurations, respectively. The circuit includes an ambient light cancellation circuit for generating a current signal to counter a first component of the first electrical signal when the first switching circuit is in the first configuration.
    Type: Application
    Filed: May 31, 2014
    Publication date: December 4, 2014
    Applicant: Fitbit, Inc.
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen