Patents by Inventor Thomas SCHIESSL

Thomas SCHIESSL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240026790
    Abstract: The invention relates to a blade component, a compressor or turbine stage of a gas turbine, in particular a gas turbine engine characterized in that the blade component includes at least two structural elements which can be connected together by means of a connection method, in particular sintering, and that the at least one connection face of the at least two structural elements lies on a face, wherein in particular the normal vector has, for at least a part of the face, a component perpendicular to the radial orientation of the blade component. The invention also concerns a method for manufacturing a blade component, and a gas turbine with a blade component.
    Type: Application
    Filed: November 22, 2021
    Publication date: January 25, 2024
    Inventors: Erik JANKE, Thomas SCHIESSL, Ingolf LANGER
  • Publication number: 20220195893
    Abstract: A device for fastening sealing plates between components of a gas turbine engine includes guide vane ring which includes guide vane segments, wherein each guide vane segment includes an outer platform and an inner platform, sealed off from one another at ends by a sealing strip. The device furthermore includes a plurality of sealing plates which seal off the guide vane segments from a component which is adjacent in the upstream or downstream direction. The sealing strips in each case form a sealing section and an extension section, wherein the sealing section serves to seal off two mutually adjoining platforms, the extension section extends axially forward or axially rearward, starting from the sealing section, and projects from the platforms, and the extension section forms a holding element for at least one sealing plate or is connected to a separate holding element.
    Type: Application
    Filed: March 23, 2020
    Publication date: June 23, 2022
    Inventor: Thomas SCHIESSL
  • Patent number: 10794224
    Abstract: A gas turbine, including: a combustion chamber; a high-pressure turbine with a first turbine guide vane ring that is arranged downstream of the combustion chamber, wherein the first turbine guide vane ring has a plurality of turbine nozzle guide vane segments that respectively include at least one guide vane, an outer platform, and an inner platform; and an outer housing. Provision is made that the turbine nozzle guide vane segments are fixed in the radial direction at the outer housing, wherein occurring radial loads are transferred into the outer housing. The invention further relates to a method for attaching a turbine nozzle guide vane segment of a gas turbine.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: October 6, 2020
    Assignee: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG
    Inventor: Thomas Schiessl
  • Patent number: 10738624
    Abstract: A rotor device of a turbomachine, having a disc wheel and a plurality of rotor blades that are arranged circumferentially inside recesses of the disc wheel and that are fixed at the disc wheel in the axial direction by means of a securing appliance. At least one flow channel that extends at least substantially in the axial direction is assigned to each recess. The securing appliance has a plurality of recesses, wherein a number and arrangement of the recesses is chosen such that the entire cross-sectional surface of the securing appliance passable by the flow, which is defined as the sum of an overlap of the recesses with at least one flow channel as viewed in the axial direction, is substantially independent of a circumferential position of the securing appliance relative to the disc wheel.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: August 11, 2020
    Assignee: Rolls-Royce Deutschland Ltd & Co KG
    Inventors: Sebastian Motsch, Thomas Schiessl
  • Publication number: 20180328195
    Abstract: A rotor device of a turbomachine, having a disc wheel and a plurality of rotor blades that are arranged circumferentially inside recesses of the disc wheel and that are fixed at the disc wheel in the axial direction by means of a securing appliance. At least one flow channel that extends at least substantially in the axial direction is assigned to each recess. The securing appliance has a plurality of recesses, wherein a number and arrangement of the recesses is chosen such that the entire cross-sectional surface of the securing appliance passable by the flow, which is defined as the sum of an overlap of the recesses with at least one flow channel as viewed in the axial direction, is substantially independent of a circumferential position of the securing appliance relative to the disc wheel.
    Type: Application
    Filed: April 27, 2018
    Publication date: November 15, 2018
    Inventors: Sebastian MOTSCH, Thomas SCHIESSL
  • Publication number: 20180058262
    Abstract: A gas turbine, including: a combustion chamber; a high-pressure turbine with a first turbine guide vane ring that is arranged downstream of the combustion chamber, wherein the first turbine guide vane ring has a plurality of turbine nozzle guide vane segments that respectively include at least one guide vane, an outer platform, and an inner platform; and an outer housing. Provision is made that the turbine nozzle guide vane segments are fixed in the radial direction at the outer housing, wherein occurring radial loads are transferred into the outer housing. The invention further relates to a method for attaching a turbine nozzle guide vane segment of a gas turbine.
    Type: Application
    Filed: August 21, 2017
    Publication date: March 1, 2018
    Inventor: Thomas SCHIESSL
  • Publication number: 20170096903
    Abstract: A securing device with multiple securing segments for the axial retaining of at least one rotor blade at a disc wheel a rotor device of a continuous-flow machine. The securing device has at least one effective area that is arranged in a radially inner area and that in the mounted state is embodied for acting together with the disc wheel in the axial direction of the rotor device, and a further effective area that is arranged in a radially outer area at a securing segment and that in the mounted state is embodied for acting together with at least one rotor blade in the axial direction of the rotor device. At least one securing segment has an additional effective area, that in the mounted state is embodied for acting together with the disc wheel in the radial direction of the rotor device. What is further described is a rotor device with such a securing device.
    Type: Application
    Filed: October 6, 2016
    Publication date: April 6, 2017
    Inventors: Thomas SCHIESSL, Markus WEINERT
  • Patent number: 9051841
    Abstract: The present invention relates to a cooled turbine blade for a gas-turbine engine having at least one cooling duct (14) extending radially, relative to a rotary axis of the gas-turbine engine, inside the airfoil and air-supply ducts (12) issuing into said cooling duct, characterized in that the cooling duct (14) extends into the blade root (6) in order to generate close to the wall a cooling airflow moved at high circumferential velocity and radially in helical form and that in the area of the blade root (6) at least one nozzle-shaped air-supply duct (12) issues into the cooling duct (14) tangentially or with a tangential velocity component.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: June 9, 2015
    Assignee: Rolls-Royce Deutschland Ltd & Co KG
    Inventors: Erik Janke, Jens Taege, Thomas Schiessl, Sebastian Meier, Heinz-Peter Schiffer, Nils Winter, Knut Lehmann
  • Publication number: 20120076665
    Abstract: The present invention relates to a cooled turbine blade for a gas-turbine engine having at least one cooling duct (14) extending radially, relative to a rotary axis of the gas-turbine engine, inside the airfoil and air-supply ducts (12) issuing into said cooling duct, characterized in that the cooling duct (14) extends into the blade root (6) in order to generate close to the wall a cooling airflow moved at high circumferential velocity and radially in helical form and that in the area of the blade root (6) at least one nozzle-shaped air-supply duct (12) issues into the cooling duct (14) tangentially or with a tangential velocity component.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 29, 2012
    Applicant: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG
    Inventors: Erik JANKE, Jens TAEGE, Thomas SCHIESSL, Sebastian MEIER, Heinz-Peter SCHIFFER, Nils WINTER, Knut LEHMANN