Patents by Inventor Thomas Smigelski

Thomas Smigelski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220111098
    Abstract: A system and method for disinfecting hard surfaces in an area such as a hospital room including a light source emitting UV light and a reflector mounted behind the light source for concentrating and directing the light toward a target. The light source and reflector rotate to direct the concentrated beam around a room, thereby making more efficient use of the energy being emitted.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Applicant: Surfacide, LLC
    Inventors: Michael Scott Garner, Thomas Smigelski, Timothy Mathew G. Escolin, Waldemar John Lyslo
  • Patent number: 11219700
    Abstract: A system and method for disinfecting hard surfaces in an area such as a hospital room including a light source emitting UV light and a reflector mounted behind the light source for concentrating and directing the light toward a target. The light source and reflector rotate to direct the concentrated beam around a room, thereby making more efficient use of the energy being emitted.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: January 11, 2022
    Assignee: Surfacide, LLC
    Inventors: Michael Scott Garner, Thomas Smigelski, Timothy Mathew G. Escolin, Waldemar John Lyslo
  • Publication number: 20190351084
    Abstract: A system and method for disinfecting hard surfaces in an area such as a hospital room including a light source emitting UV light and a reflector mounted behind the light source for concentrating and directing the light toward a target. The light source and reflector rotate to direct the concentrated beam around a room, thereby making more efficient use of the energy being emitted.
    Type: Application
    Filed: July 30, 2019
    Publication date: November 21, 2019
    Applicant: Surfacide, LLC
    Inventors: Michael Scott Garner, Thomas Smigelski, Timothy Mathew G. Escolin, Waldemar John Lyslo
  • Patent number: 10406254
    Abstract: A system and method for disinfecting hard surfaces in an area such as a hospital room including a light source emitting UV light and a reflector mounted behind the light source for concentrating and directing the light toward a target. The light source and reflector rotate to direct the concentrated beam around a room, thereby making more efficient use of the energy being emitted.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: September 10, 2019
    Assignee: Surfacide, LLC
    Inventors: Michael Scott Garner, Thomas Smigelski, Timothy Mathew G. Escolin, Waldemar John Lyslo
  • Publication number: 20180214592
    Abstract: A system and method for disinfecting hard surfaces in an area such as a hospital room including a light source emitting UV light and a reflector mounted behind the light source for concentrating and directing the light toward a target. The light source and reflector rotate to direct the concentrated beam around a room, thereby making more efficient use of the energy being emitted.
    Type: Application
    Filed: March 28, 2018
    Publication date: August 2, 2018
    Applicant: Surfacide, LLC
    Inventors: Michael Scott Garner, Thomas Smigelski, Timothy Mathew G. Escolin, Waldemar John Lyslo
  • Patent number: 9950088
    Abstract: A system and method for disinfecting hard surfaces in an area such as a hospital room including a light source emitting UV light and a reflector mounted behind the light source for concentrating and directing the light toward a target. The light source and reflector rotate to direct the concentrated beam around a room, thereby making more efficient use of the energy being emitted.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: April 24, 2018
    Assignee: Surfacide, LLC
    Inventors: Michael Scott Garner, Thomas Smigelski, Timothy Mathew G. Escolin, Waldemar John Lyslo
  • Publication number: 20170100500
    Abstract: A system and method for disinfecting hard surfaces in an area such as a hospital room including a light source emitting UV light and a reflector mounted behind the light source for concentrating and directing the light toward a target. The light source and reflector rotate to direct the concentrated beam around a room, thereby making more efficient use of the energy being emitted.
    Type: Application
    Filed: December 20, 2016
    Publication date: April 13, 2017
    Applicant: Surfacide, LLC
    Inventors: Michael Scott Garner, Thomas Smigelski, Timothy Mathew G. Escolin, Waldemar John Lyslo
  • Patent number: 9555144
    Abstract: A system and method for disinfecting hard surfaces in an area such as a hospital room including a light source emitting UV light and a reflector mounted behind the light source for concentrating and directing the light toward a target. The light source and reflector rotate to direct the concentrated beam around a room, thereby making more efficient use of the energy being emitted.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: January 31, 2017
    Assignee: SURFACIDE, LLC
    Inventors: Michael Scott Garner, Thomas Smigelski, Timothy Mathew G. Escolin, Waldemar John Lyslo
  • Publication number: 20150217012
    Abstract: A system and method for disinfecting hard surfaces in an area such as a hospital room including a light source emitting UV light and a reflector mounted behind the light source for concentrating and directing the light toward a target. The light source and reflector rotate to direct the concentrated beam around a room, thereby making more efficient use of the energy being emitted.
    Type: Application
    Filed: April 15, 2015
    Publication date: August 6, 2015
    Inventors: Michael Scott Garner, Thomas Smigelski, Timothy Mathew G. Escolin, Waldemar John Lyslo
  • Patent number: 9023274
    Abstract: A system and method for disinfecting hard surfaces in an area such as a hospital room including a light source emitting UV light and a reflector mounted behind the light source for concentrating and directing the light toward a target. The light source and reflector rotate to direct the concentrated beam around a room, thereby making more efficient use of the energy being emitted.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: May 5, 2015
    Assignee: Surfacide, LLC
    Inventors: Michael Scott Garner, Thomas Smigelski, Timothy Mathew G. Escolin, Waldemar John Lyslo
  • Patent number: 8576693
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor modulating a first carrier of the plurality of spectrally overlapping carrier signals based on a first modulation scheme while modulating a second carrier of the plurality of spectrally overlapping carrier signals based on a second modulation scheme.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: November 5, 2013
    Assignee: HTC Corporation
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lee Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 8547824
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor modulating a first carrier of the plurality of spectrally overlapping carrier signals based on a first modulation scheme while modulating a second carrier of the plurality of spectrally overlapping carrier signals based on a second modulation scheme.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: October 1, 2013
    Assignee: HTC Corporation
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lee Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Publication number: 20130243647
    Abstract: A system and method for disinfecting hard surfaces in an area such as a hospital room including a light source emitting UV light and a reflector mounted behind the light source for concentrating and directing the light toward a target. The light source and reflector rotate to direct the concentrated beam around a room, thereby making more efficient use of the energy being emitted.
    Type: Application
    Filed: January 31, 2013
    Publication date: September 19, 2013
    Inventors: Michael Scott Garner, Thomas Smigelski, Timothy Mathew G. Escolin, Dennis Matthew Puhalla, Scott Harold Wilson, Waldemar John Lyslo
  • Patent number: 8406115
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 26, 2013
    Assignee: HTC Corporation
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 8351321
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a receiver configured to de-modulate symbols from at least one of a plurality of spectrally overlapping carrier signals to produce a receiver output; a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor coupled to the receiver, wherein the processor applies a Fourier transform to the receiver output; and a controller programmed to instruct the transmitter to transmit at least one symbol representing a request for bandwidth allocation on a first carrier; wherein the controller is further programmed to determine when a collision has occurred on the first carrier.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: January 8, 2013
    Assignee: HTC Corporation
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S Russell, Calvin G Nelson, Niranjan R Samant, Joseph F Chiapetta, Scott Sarnikowski
  • Publication number: 20120216281
    Abstract: A method and apparatus for resisting malicious code in a computing device. A software component corresponding to an operating system kernel is analyzed prior to executing the software component to detect the presence of one or more specific instructions such as malicious code, a change in mode permissions or instructions to modify or turn off security monitoring software, and taking a graduated action in response to the detection of one or more specific instructions. The graduated action taken is specified by a security policy (or policies) stored on the computing device. The analyzing may include off-line scanning of a particular code or portion of code for certain instructions, op codes, or patterns, and includes scanning in real-time as the kernel or kernel module is loading while the code being scanned is not yet executing (i.e., it is not yet “on-line”). Analysis of other code proceeds according to policies.
    Type: Application
    Filed: December 9, 2011
    Publication date: August 23, 2012
    Applicant: PCTEL Secure LLC
    Inventors: Eric Ridvan Uner, Benjamin James Leslie, Joshua Scott Matthews, Changhua Chen, Thomas Smigelski, Anthony Kobrinetz
  • Publication number: 20120195184
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor modulating a first carrier of the plurality of spectrally overlapping carrier signals based on a first modulation scheme while modulating a second carrier of the plurality of spectrally overlapping carrier signals based on a second modulation scheme.
    Type: Application
    Filed: April 11, 2012
    Publication date: August 2, 2012
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 8174956
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor modulating a first carrier of the plurality of spectrally overlapping carrier signals based on a first modulation scheme while modulating a second carrier of the plurality of spectrally overlapping carrier signals based on a second modulation scheme.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: May 8, 2012
    Assignee: HTC Corporation
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S Russell, Calvin G Nelson, Niranjan R Samant, Joseph F Chiappetta, Scott Sarnikowski
  • Publication number: 20120076183
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor modulating a first carrier of the plurality of spectrally overlapping carrier signals based on a first modulation scheme while modulating a second carrier of the plurality of spectrally overlapping carrier signals based on a second modulation scheme.
    Type: Application
    Filed: December 5, 2011
    Publication date: March 29, 2012
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lee Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 8089853
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a receiver configured to receive a waveform comprising a plurality of spectrally overlapping carrier signals from at least two of a plurality of remote units, wherein the plurality of spectrally overlapping carrier signals are modulated using an inverse Fourier transform algorithm; a transmitter; a processor coupled to the transmitter, wherein the processor outputs data for transmission to the transmitter, wherein the processor applies an inverse Fourier transform algorithm to the data provided to the transmitter; a controller programed to instruct the transmitter to transmit a predetermined identifier on at least one of the spectrally overlapping carrier signals, the predetermined identifier identifying to a first remote unit a range of the plurality of spectrally overlapping carrier signals for the first remote unit to receive control information.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: January 3, 2012
    Assignee: HTC Corporation
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S Russell, Calvin G Nelson, Niranjan R Samant, Joseph F Chiappetta, Scott Sarnikowski