Patents by Inventor Thomas Spann

Thomas Spann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240014090
    Abstract: A power semiconductor device package. The package may include a baseplate that has a plurality of through holes. The package may also include an insulating body, affixed to a top side of the baseplate The insulating body may include a main portion, to enclose a set of semiconductor devices therein, and a plurality of locking structures, the plurality of locking structures disposed along a lower periphery of the main portion, and integrally formed within the insulating body, wherein the plurality of locking structures extend through the baseplate.
    Type: Application
    Filed: July 11, 2022
    Publication date: January 11, 2024
    Applicant: Littelfuse, Inc.
    Inventor: Thomas Spann
  • Patent number: 11811180
    Abstract: Provided herein are semiconductor packages with improved electrical contacts (e.g. pins). In some embodiments, an assembly may include a substrate and an electrical contact coupled to the substrate, the electrical contact consisting of a first component defined by a complex 3D designed receiving pin. The electrical contact may further include a second component defined by another complex 3D designed penetrating pin, wherein the first component engages the second component to deform mechanically and to weld when the first component and the second component are coupled together.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: November 7, 2023
    Assignee: IXYS Semiconductor GmbH
    Inventors: Yong Ai-Ong, Thomas Spann
  • Patent number: 11798868
    Abstract: A semiconductor die having a metal tab connected thereto. The metal tab includes at least one slot on at least one side of the metal tab, wherein the at least one slot i) creates an opening between at least two portions of the metal tab and ii) exposes the semiconductor die in relation to the metal tab. The semiconductor die can be a silicon (Si) die and the metal tab can be a copper (Cu) tab, where the at least one slot includes at least four slots corresponding to each of at least four sides of the metal, and wherein with respect to each of the at least four sides, each corresponding slot i) creates an opening between at least two portions of the Cu metal tab and ii) exposes the Si semiconductor die in relation to the Cu metal tab.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: October 24, 2023
    Inventor: Thomas Spann
  • Publication number: 20220310409
    Abstract: A method to connect power terminals to substrates within semiconductor packages is disclosed. The power terminal connection method minimally adapts the power terminal so that laser treatment can be used to connect the power terminal to the substrate. The power terminal may be adapted in a variety of ways, such that an interface between the power terminal and the substrate may be transformed (melted with consecutive rapid solidification) by the laser device, allowing the power terminal to be connected to the substrate.
    Type: Application
    Filed: March 24, 2021
    Publication date: September 29, 2022
    Applicant: Littelfuse, Inc.
    Inventors: ELAHEH ARJMAND, HAMILTON SEIROCO, THOMAS SPANN
  • Publication number: 20220085525
    Abstract: Provided herein are semiconductor packages with improved electrical contacts (e.g. pins). In some embodiments, an assembly may include a substrate and an electrical contact coupled to the substrate, the electrical contact consisting of a first component defined by a complex 3D designed receiving pin. The electrical contact may further include a second component defined by another complex 3D designed penetrating pin, wherein the first component engages the second component to deform mechanically and to weld when the first component and the second component are coupled together.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 17, 2022
    Applicant: IXYS Semiconductor GmbH
    Inventors: Yong Ai-Ong, Thomas Spann
  • Publication number: 20210272884
    Abstract: A semiconductor die having a metal tab connected thereto. The metal tab includes at least one slot on at least one side of the metal tab, wherein the at least one slot i) creates an opening between at least two portions of the metal tab and ii) exposes the semiconductor die in relation to the metal tab. The semiconductor die can be a silicon (Si) die and the metal tab can be a copper (Cu) tab, where the at least one slot includes at least four slots corresponding to each of at least four sides of the metal, and wherein with respect to each of the at least four sides, each corresponding slot i) creates an opening between at least two portions of the Cu metal tab and ii) exposes the Si semiconductor die in relation to the Cu metal tab.
    Type: Application
    Filed: February 23, 2021
    Publication date: September 2, 2021
    Applicant: Littelfuse, Inc.
    Inventor: Thomas Spann
  • Publication number: 20210272874
    Abstract: Aspects of the present disclosure include one or more power semiconductor device modules. A power semiconductor module can include: a power terminal, a housing, a heatsink and a protrusion, wherein the housing includes a first tab, and a first protrusion, and wherein the first tab contacts the substrate, and the first protrusion contacts the heatsink.
    Type: Application
    Filed: February 23, 2021
    Publication date: September 2, 2021
    Applicant: Littelfuse, Inc.
    Inventor: Thomas Spann
  • Patent number: 10446462
    Abstract: A power semiconductor device module includes, among other parts, a DMB structure. The DMB structure includes a ceramic sheet, a top metal plate that is directly bonded to the top of the ceramic, and a bottom metal plate that is directly bonded to the bottom of the ceramic. A power semiconductor device die is attached to the top metal plate. The bottom surface of the bottom metal plate has a plurality small cavities. When the bottom metal plate is attached to another metal member, a material between the plate and the member (for example, thermal grease or a PCM or solder) is forced into the cavities. This results in an improvement in thermal transfer between the plate and the member. Such cavities can alternatively, or in addition, be included on a metal surface other than a DMB, such as the bottom surface of a baseplate of the module.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: October 15, 2019
    Assignee: LITTELFUSE, INC.
    Inventor: Thomas Spann
  • Publication number: 20190304857
    Abstract: A power semiconductor device module includes a metal baseplate and a plastic housing that together form a tray. Power electronics are disposed in the tray. A plastic cap covers the tray. Electrical press-fit terminals are disposed along the periphery of the tray. Each electrical terminal has a press-fit pin portion that sticks up through a hole in the cap. In addition, the module includes four mechanical corner press-fit anchors disposed outside the tray. One end of each anchor is embedded into the housing. The other end is an upwardly extending press-fit pin portion. The module is manufactured and sold with the press-fit pin portions of the electrical terminals and the mechanical corner anchors unattached to any printed circuit board (PCB). The mechanical anchors help to secure the module to a printed circuit board. Due to the anchors, screws or bolts are not needed to hold the module to the PCB.
    Type: Application
    Filed: June 8, 2019
    Publication date: October 3, 2019
    Applicant: Littelfuse, Inc.
    Inventor: Thomas Spann
  • Publication number: 20190252284
    Abstract: A power semiconductor device module includes, among other parts, a DMB structure. The DMB structure includes a ceramic sheet, a top metal plate that is directly bonded to the top of the ceramic, and a bottom metal plate that is directly bonded to the bottom of the ceramic. A power semiconductor device die is attached to the top metal plate. The bottom surface of the bottom metal plate has a plurality small cavities. When the bottom metal plate is attached to another metal member, a material between the plate and the member (for example, thermal grease or a PCM or solder) is forced into the cavities. This results in an improvement in thermal transfer between the plate and the member. Such cavities can alternatively, or in addition, be included on a metal surface other than a DMB, such as the bottom surface of a baseplate of the module.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 15, 2019
    Applicant: Littelfuse, Inc.
    Inventor: Thomas Spann, Jr.
  • Patent number: 10347549
    Abstract: A power semiconductor device module includes a metal baseplate and a plastic housing that together form a tray. Power electronics are disposed in the tray. A plastic cap covers the tray. Electrical press-fit terminals are disposed along the periphery of the tray. Each electrical terminal has a press-fit pin portion that sticks up through a hole in the cap. In addition, the module includes four mechanical corner press-fit anchors disposed outside the tray. One end of each anchor is embedded into the housing. The other end is an upwardly extending press-fit pin portion. The module is manufactured and sold with the press-fit pin portions of the electrical terminals and the mechanical corner anchors unattached to any printed circuit board (PCB). The mechanical anchors help to secure the module to a printed circuit board. Due to the anchors, screws or bolts are not needed to hold the module to the PCB.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: July 9, 2019
    Assignee: LITTELFUSE, INC.
    Inventor: Thomas Spann
  • Patent number: 10276472
    Abstract: A power semiconductor device module includes, among other parts, a DMB structure. The DMB structure includes a ceramic sheet, a top metal plate that is directly bonded to the top of the ceramic, and a bottom metal plate that is directly bonded to the bottom of the ceramic. A power semiconductor device die is attached to the top metal plate. The bottom surface of the bottom metal plate has a plurality small cavities. When the bottom metal plate is attached to another metal member, a material between the plate and the member (for example, thermal grease or a PCM or solder) is forced into the cavities. This results in an improvement in thermal transfer between the plate and the member. Such cavities can alternatively, or in addition, be included on a metal surface other than a DMB, such as the bottom surface of a baseplate of the module.
    Type: Grant
    Filed: April 1, 2017
    Date of Patent: April 30, 2019
    Assignee: IXYS, LLC
    Inventor: Thomas Spann
  • Publication number: 20180286778
    Abstract: A power semiconductor device module includes, among other parts, a DMB structure. The DMB structure includes a ceramic sheet, a top metal plate that is directly bonded to the top of the ceramic, and a bottom metal plate that is directly bonded to the bottom of the ceramic. A power semiconductor device die is attached to the top metal plate. The bottom surface of the bottom metal plate has a plurality small cavities. When the bottom metal plate is attached to another metal member, a material between the plate and the member (for example, thermal grease or a PCM or solder) is forced into the cavities. This results in an improvement in thermal transfer between the plate and the member. Such cavities can alternatively, or in addition, be included on a metal surface other than a DMB, such as the bottom surface of a baseplate of the module.
    Type: Application
    Filed: April 1, 2017
    Publication date: October 4, 2018
    Inventor: Thomas Spann
  • Patent number: 10062621
    Abstract: A power semiconductor device module includes a metal baseplate and a plastic housing that together form a tray. Power electronics are disposed in the tray. A plastic cap covers the tray. Electrical press-fit terminals are disposed along the periphery of the tray. Each electrical terminal has a press-fit pin portion that sticks up through a hole in the cap. In addition, the module includes four mechanical corner press-fit anchors disposed outside the tray. One end of each anchor is embedded into the housing. The other end is an upwardly extending press-fit pin portion. The module is manufactured and sold with the press-fit pin portions of the electrical terminals and the mechanical corner anchors unattached to any printed circuit board (PCB). The mechanical anchors help to secure the module to a printed circuit board. Due to the anchors, screws or bolts are not needed to hold the module to the PCB.
    Type: Grant
    Filed: April 30, 2016
    Date of Patent: August 28, 2018
    Assignee: IXYS, LLC
    Inventor: Thomas Spann
  • Patent number: 10000423
    Abstract: Top and bottom metal plates of a DMB panel stack are simultaneously direct-bonded to the central ceramic sheet in a single high-temperature step. During this step, the DMB panel rests on an array of very small upwardly projecting ceramic contacts of a ceramic carrier. An amount of unoxidized carbon (e.g., a layer of graphite) is disposed on each contact projection such that an amount of carbon is disposed between the top of the contact projection and the metal oxide skin of the bottom metal plate. The carbon bonds with oxygen from the metal oxide skin, thereby preventing connection or direct-bonding of the ceramic contact projection to the second metal plate. This reduces imperfections in the metal of the bottom plate and reduces the amount of ceramic particles bonded to metal at contact sites. As a result, less post-bonding processing is required to make a high quality DMB substrate.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: June 19, 2018
    Assignee: IXYS, LLC
    Inventor: Thomas Spann
  • Patent number: 9941256
    Abstract: A packaged inverse diode device exhibits superior commutation robustness. The device includes a stack of inverse diodes disposed within a housing. Each adjacent pair of inverse diodes is bonded together by an intervening DMB (Direct Metal Bonded) substrate structure. At one end of the stack of diode dice and DMB substrate structures is attached a first metal terminal. A second metal terminal is attached to the other end of the stack. The two terminals serve as package terminals of the overall device. In a novel method, the device undergoes severe commutation. A large forward current is made to flow through the diode stack, followed by a rapid reversal of the voltage across the stack to a large reverse polarity voltage. Despite a substantial rate of change of the commutation current at the onset of the reverse voltage condition, the inverse diode device is not damaged.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: April 10, 2018
    Assignee: IXYS Corporation
    Inventors: Frank Ettingshausen, Thomas Spann, Elmar Wisotzki
  • Patent number: 9929066
    Abstract: The baseplate of a power semiconductor device module makes reliable and superior thermal contact with a heatsink when fixed to the heatsink. The baseplate includes a rectangular plate portion, a first downward-extending peripheral heel extension portion, and a second downward-extending peripheral heel extension portion. In one example, the plate portion has four mounting holes for receiving mounting bolts. There is one mounting hole located adjacent each of four corners of the rectangular plate portion. The central portion of the bottom surface of the plate portion has a slightly convex downward shape. The strip-shaped first heel extension portion extends along a first edge of the bottom surface. The strip-shaped second heel extension portion extends along a second edge of the bottom surface opposite the first edge. Each of the first and second heel extension portions extends downward from the bottom surface for a distance of between thirty and five hundred microns.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: March 27, 2018
    Assignee: IXYS Corporation
    Inventor: Thomas Spann
  • Publication number: 20170316993
    Abstract: A power semiconductor device module includes a metal baseplate and a plastic housing that together form a tray. Power electronics are disposed in the tray. A plastic cap covers the tray. Electrical press-fit terminals are disposed along the periphery of the tray. Each electrical terminal has a press-fit pin portion that sticks up through a hole in the cap. In addition, the module includes four mechanical corner press-fit anchors disposed outside the tray. One end of each anchor is embedded into the housing. The other end is an upwardly extending press-fit pin portion. The module is manufactured and sold with the press-fit pin portions of the electrical terminals and the mechanical corner anchors unattached to any printed circuit board (PCB). The mechanical anchors help to secure the module to a printed circuit board. Due to the anchors, screws or bolts are not needed to hold the module to the PCB.
    Type: Application
    Filed: December 13, 2016
    Publication date: November 2, 2017
    Inventor: Thomas Spann
  • Publication number: 20170316992
    Abstract: A power semiconductor device module includes a metal baseplate and a plastic housing that together form a tray. Power electronics are disposed in the tray. A plastic cap covers the tray. Electrical press-fit terminals are disposed along the periphery of the tray. Each electrical terminal has a press-fit pin portion that sticks up through a hole in the cap. In addition, the module includes four mechanical corner press-fit anchors disposed outside the tray. One end of each anchor is embedded into the housing. The other end is an upwardly extending press-fit pin portion. The module is manufactured and sold with the press-fit pin portions of the electrical terminals and the mechanical corner anchors unattached to any printed circuit board (PCB). The mechanical anchors help to secure the module to a printed circuit board. Due to the anchors, screws or bolts are not needed to hold the module to the PCB.
    Type: Application
    Filed: April 30, 2016
    Publication date: November 2, 2017
    Inventor: Thomas Spann
  • Publication number: 20170125322
    Abstract: A power module includes a substrate DMB (Direct Metal Bonded). A novel bridging DMB is surface mounted to the substrate DMB along with power semiconductor device dice. The top metal layer of the bridging DMB has one or more islands to which bonding wires can connect. In one example, an electrical path extends from a module terminal, through a first bonding wire and to a first location on a strip-shaped island, through the island to a second location, and from the second location and through a second bonding wire. The strip-shaped island of the bridging DMB serves as a section of the overall electrical path. Another bonding wire of a separate electrical path passes transversely over the strip-shaped island without any wire crossing any other wire. Use of the bridging DMB promotes bonding wire mechanical strength as well as heat sinking from bonding wires down to the substrate DMB.
    Type: Application
    Filed: July 31, 2016
    Publication date: May 4, 2017
    Inventors: Thomas Spann, Ira Balaj-Loos