Patents by Inventor Thomas Stammler

Thomas Stammler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10151929
    Abstract: An illumination optical unit for projection lithography guides illumination light toward an object field and has a mirror array including a multiplicity of individual mirrors which are tiltable independently. A condenser optical unit transfers an arrangement plane of the mirror array into a pupil plane of the illumination optical unit. An optical hollow waveguide component of the illumination optical unit is upstream of the mirror array in the beam path of the illumination light and homogenizes and stabilizes an illumination light beam incident on the mirror array. An input coupling optical unit is upstream of the hollow waveguide component and couples an incident illumination light beam into the hollow waveguide component. A relay optical unit images a beam exit surface of the hollow waveguide component onto the mirror array. The illumination optical unit is insensitive to light source instabilities.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: December 11, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Thomas Stammler
  • Patent number: 10088754
    Abstract: A raster arrangement includes at least one raster element of a first type and at least one raster element of a second type. Each raster element of the first type has a first bundle-influencing effect. Each raster element of the second type has a second bundle-influencing effect which is different from the first bundle-influencing effect. Each raster element of the first type is located in a first area of the raster arrangement. Each raster element of the second type is located in a second area of the raster arrangement which is different from the first area of the raster arrangement.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: October 2, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Publication number: 20170192361
    Abstract: A raster arrangement includes at least one raster element of a first type and at least one raster element of a second type. Each raster element of the first type has a first bundle-influencing effect. Each raster element of the second type has a second bundle-influencing effect which is different from the first bundle-influencing effect. Each raster element of the first type is located in a first area of the raster arrangement. Each raster element of the second type is located in a second area of the raster arrangement which is different from the first area of the raster arrangement.
    Type: Application
    Filed: March 21, 2017
    Publication date: July 6, 2017
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Publication number: 20170102551
    Abstract: An illumination optical unit for projection lithography guides illumination light toward an object field and has a mirror array including a multiplicity of individual mirrors which are tiltable independently. A condenser optical unit transfers an arrangement plane of the mirror array into a pupil plane of the illumination optical unit. An optical hollow waveguide component of the illumination optical unit is upstream of the mirror array in the beam path of the illumination light and homogenizes and stabilizes an illumination light beam incident on the mirror array. An input coupling optical unit is upstream of the hollow waveguide component and couples an incident illumination light beam into the hollow waveguide component. A relay optical unit images a beam exit surface of the hollow waveguide component onto the mirror array. The illumination optical unit is insensitive to light source instabilities.
    Type: Application
    Filed: December 20, 2016
    Publication date: April 13, 2017
    Inventors: Markus Deguenther, Thomas Stammler
  • Patent number: 9606441
    Abstract: A microlithography illumination system includes a first raster arrangement including a first plurality of bundle-forming raster elements arranged in or adjacent a first plane of the illumination system. The first plurality of bundle-forming raster elements is configured to generate a raster arrangement of secondary light sources. The illumination system also includes a transmission optics configured to superimpose transmission of the illumination light of the secondary light sources into the object field. The transmission optics includes a second raster arrangement comprising a second plurality of bundle-forming raster elements. The illumination system further includes a displacement device configured to displace a displaceable segment of the first raster arrangement relative to the second raster arrangement. The displaceable segment includes exactly one of the raster elements, a group of several raster elements, a raster column, a raster area, or several groups of raster elements.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: March 28, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Publication number: 20160161858
    Abstract: An illumination system for microlithography serves to illuminate an illumination field with illumination light of a primary light source. A first raster arrangement has bundle-forming first raster elements which are arranged in a first plane of the illumination system or adjacent to the plane. The first raster arrangement serves to generate a raster arrangement of secondary light sources. A transmission optics serves for superimposed transmission of the illumination light of the secondary light sources into the illumination field. The transmission optics has a second raster arrangement with bundle-forming second raster elements. In each case one of the raster elements of the first raster arrangement is allocated to one of the raster elements of the second raster arrangement for guiding a partial bundle of an entire bundle of illumination light. The first raster arrangement for example has at least two types (I, II, III) of the first raster elements which have different bundle-influencing effects.
    Type: Application
    Filed: February 1, 2016
    Publication date: June 9, 2016
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Patent number: 9280060
    Abstract: A raster arrangement includes first and second types of raster elements which have different bundle-influencing effects. There is a distance step between a first raster area and a second raster area. The first raster area comprises a raster element of the first raster element type. The second raster area includes a raster element of the second raster element type. The raster arrangement is configured to be used in a microlithography illumination system.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: March 8, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Publication number: 20150022798
    Abstract: A raster arrangement includes first and second types of raster elements which have different bundle-influencing effects. There is a distance step between a first raster area and a second raster area. The first raster area comprises a raster element of the first raster element type. The second raster area includes a raster element of the second raster element type. The raster arrangement is configured to be used in a microlithography illumination system.
    Type: Application
    Filed: September 25, 2014
    Publication date: January 22, 2015
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Patent number: 8873023
    Abstract: An illumination system for microlithography serves to illuminate an illumination field with illumination light of a primary light source. A first raster arrangement has bundle-forming first raster elements which are arranged in a first plane of the illumination system or adjacent to the plane. The first raster arrangement serves to generate a raster arrangement of secondary light sources. A transmission optics serves for superimposed transmission of the illumination light of the secondary light sources into the illumination field. The transmission optics has a second raster arrangement with bundle-forming second raster elements. In each case one of the raster elements of the first raster arrangement is allocated to one of the raster elements of the second raster arrangement for guiding a partial bundle of an entire bundle of illumination light. The first raster arrangement for example has at least two types (I, II, III) of the first raster elements which have different bundle-influencing effects.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: October 28, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Publication number: 20120019796
    Abstract: An illumination system for microlithography serves to illuminate an illumination field with illumination light of a primary light source. A first raster arrangement has bundle-forming first raster elements which are arranged in a first plane of the illumination system or adjacent to the plane. The first raster arrangement serves to generate a raster arrangement of secondary light sources. A transmission optics serves for superimposed transmission of the illumination light of the secondary light sources into the illumination field. The transmission optics has a second raster arrangement with bundle-forming second raster elements. In each case one of the raster elements of the first raster arrangement is allocated to one of the raster elements of the second raster arrangement for guiding a partial bundle of an entire bundle of illumination light. The first raster arrangement for example has at least two types (I, II, III) of the first raster elements which have different bundle-influencing effects.
    Type: Application
    Filed: July 19, 2011
    Publication date: January 26, 2012
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Publication number: 20100079738
    Abstract: An optical measurement apparatus (50) for a projection exposure system (10) for microlithography includes an optical sensor (52) that measures a given property of exposure radiation (16) within the projection exposure system (10) and a data interface (66; 166) that transmits at least one value for the measured property in the form of measurement data (60) to a data receiver (72). The data receiver (72) is separated from the measurement apparatus (50) at least during the measuring operation, and is disposed outside of the measurement apparatus (50). The optical measurement apparatus has the outer form of a reticle.
    Type: Application
    Filed: September 29, 2009
    Publication date: April 1, 2010
    Applicant: Carl Zeiss SMT AG
    Inventors: Johannes Eisenmenger, Thomas Stammler, Richard Ell
  • Patent number: 7605914
    Abstract: An optical system has at least two optical elements whose spatial relation with respect to each other can be changed. At least one of the optical elements comprises a plurality of optical components. The optical system comprises first measuring means for individually measuring an image defect of each optical component, and first computing means for computing first target positions for the plurality of optical components such that an overall image defect of the at least one of the optical elements is below a predetermined threshold value. Second measuring means are provided for measuring an overall image defect of the optical system, and second computing means represent the measured overall image defect as a linear combination of base functions of an orthogonal function set. The second computing means calculate second target position for the at least two optical elements so as to reduce the overall image defect.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: October 20, 2009
    Assignee: Carl Zeiss SMT AG
    Inventors: Thomas Stammler, Christian Wagner, Gerd Reisinger
  • Publication number: 20090225308
    Abstract: An optical system has at least two optical elements whose spatial relation with respect to each other can be changed. At least one of the optical elements comprises a plurality of optical components. The optical system comprises first measuring means for individually measuring an image defect of each optical component, and first computing means for computing first target positions for the plurality of optical components such that an overall image defect of the at least one of the optical elements is below a predetermined threshold value. Second measuring means are provided for measuring an overall image defect of the optical system, and second computing means represent the measured overall image defect as a linear combination of base functions of an orthogonal function set. The second computing means calculate second target position for the at least two optical elements so as to reduce the overall image defect.
    Type: Application
    Filed: January 2, 2009
    Publication date: September 10, 2009
    Applicant: CARL ZEISS SMT AG
    Inventors: Thomas Stammler, Christian Wagner, Gerd Reisinger
  • Publication number: 20080068599
    Abstract: In order to optimize the image properties of several optical elements of which at least one is moved relative to at least one stationary optical element, the overall image defect resulting from the interaction of all optical elements is first of all measured. This is represented as a linear combination of the base functions of an orthogonal function set. The movable element is then moved to a new measurement position and the overall image defect is measured once again. After the linear combination representation of the new overall image defect, the image defects of the movable element and of the stationary element are calculated from the data thereby obtained. With only one movable optical element a target position in which the overall image defect is minimized can be directly calculated and adjusted there from. If several movable optical elements are available, methods are given for the efficient determination of the respective target position.
    Type: Application
    Filed: November 16, 2007
    Publication date: March 20, 2008
    Applicant: Carl Zeiss SMT AG
    Inventors: Bernd Geh, Paul Graupner, Thomas Stammler, Dirk Stenkamp, Jochen Stuhler, Klaus Wurmbrand
  • Patent number: 7301622
    Abstract: In order to optimize the image properties of several optical elements of which at least one is moved relative to at least one stationary optical element, the overall image defect resulting from the interaction of all optical elements is first of all measured. This is represented as a linear combination of the base functions of an orthogonal function set. The movable element is then moved to a new measurement position and the overall image defect is measured once again. After the linear combination representation of the new overall image defect, the image defects of the movable element and of the stationary element are calculated from the data thereby obtained. With only one movable optical element a target position in which the overall image defect is minimized can be directly calculated and adjusted there from. If several movable optical elements are available, methods are given for the efficient determination of the respective target position.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: November 27, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Bernd Geh, Paul Gräupner, Thomas Stammler, Dirk Stenkamp, Jochen Stühler, Klaus Wurmbrand
  • Publication number: 20070071303
    Abstract: An optical system has at least two optical elements whose spatial relation with respect to each other can be changed. At least one of the optical elements comprises a plurality of optical components. The optical system comprises first measuring means for individually measuring an image defect of each optical component, and first computing means for computing first target positions for the plurality of optical components such that an overall image defect of the at least one of the optical elements is below a predetermined threshold value. Second measuring means are provided for measuring an overall image defect of the optical system, and second computing means represent the measured overall image defect as a linear combination of base functions of an orthogonal function set. The second computing means calculate second target position for the at least two optical elements so as to reduce the overall image defect.
    Type: Application
    Filed: September 29, 2005
    Publication date: March 29, 2007
    Inventors: Thomas Stammler, Christian Wagner, Gerd Reisinger
  • Publication number: 20050254042
    Abstract: In order to optimize the image properties of several optical elements of which at least one is moved relative to at least one stationary optical element, the overall image defect resulting from the interaction of all optical elements is first of all measured. This is represented as a linear combination of the base functions of an orthogonal function set. The movable element is then moved to a new measurement position and the overall image defect is measured once again. After the linear combination representation of the new overall image defect, the image defects of the movable element and of the stationary element are calculated from the data thereby obtained. With only one movable optical element a target position in which the overall image defect is minimized can be directly calculated and adjusted there from. If several movable optical elements are available, methods are given for the efficient determination of the respective target position.
    Type: Application
    Filed: July 22, 2005
    Publication date: November 17, 2005
    Inventors: Bernd Geh, Paul Graupner, Thomas Stammler, Dirk Stenkamp, Jochen Stuhler, Klaus Wurmbrand
  • Patent number: 6934011
    Abstract: In order to optimize the image properties of several optical elements of which at least one is moved relative to at least one stationary optical element, the overall image defect resulting from the interaction of all optical elements is first of all measured. This is represented as a linear combination of the base functions of an orthogonal function set. The movable element is then moved to a new measurement position and the overall image defect is measured once again. After the linear combination representation of the new overall image defect, the image defects of the movable element and of the stationary element are calculated from the data thereby obtained. With only one movable optical element a target position in which the overall image defect is minimized can be directly calculated and adjusted there from. If several movable optical elements are available, methods are given for the efficient determination of the respective target position.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: August 23, 2005
    Assignee: Carl Zeiss SMT AG
    Inventors: Bernd Geh, Paul Gräupner, Thomas Stammler, Dirk Stenkamp, Jochen Stühler, Klaus Wurmbrand
  • Publication number: 20040090617
    Abstract: In order to optimize the image properties of several optical elements of which at least one is moved relative to at least one stationary optical element, the overall image defect resulting from the interaction of all optical elements is first of all measured. This is represented as a linear combination of the base functions of an orthogonal function set. The movable element is then moved to a new measurement position and the overall image defect is measured once again. After the linear combination representation of the new overall image defect, the image defects of the movable element and of the stationary element are calculated from the data thereby obtained. With only one movable optical element a target position in which the overall image defect is minimized can be directly calculated and adjusted there from. If several movable optical elements are available, methods are given for the efficient determination of the respective target position.
    Type: Application
    Filed: October 30, 2003
    Publication date: May 13, 2004
    Inventors: Bernd Geh, Paul Graupner, Thomas Stammler, Dirk Stenkamp, Jochen Stuhler, Klaus Wurmbrand
  • Patent number: 6678240
    Abstract: In order to optimize the image properties of several optical elements of which at least one is moved relative to at least one stationary optical element, the overall image defect resulting from the interaction of all optical elements is first of all measured. This is represented as a linear combination of the base functions of an orthogonal function set. The movable element is then moved to a new measurement position and the overall image defect is measured once again. After the linear combination representation of the new overall image defect, the image defects of the movable element and of the stationary element are calculated from the data thereby obtained. With only one movable optical element a target position in which the overall image defect is minimized can be directly calculated and adjusted there from. If several movable optical elements are available, methods are given for the efficient determination of the respective target position.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: January 13, 2004
    Assignee: Carl Zeiss SMT AG
    Inventors: Bernd Geh, Paul Gräupner, Klaus Wurmbrand, Thomas Stammler, Dirk Stenkamp, Jochen Stühler