Patents by Inventor Thomas Steere
Thomas Steere has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12049205Abstract: A brake system is provided for a trailer vehicle having a plurality of axles, each of which has a wheel end on a respective side of the vehicle, the brake system including first and second pneumatic circuits for supplying air pressure to brake devices at the wheel ends. The system includes a spring brake modulator valve arrangement adapted to control pressure to spring brakes on the vehicle, which modulator valve arrangement receives an input from at least one of the pneumatic circuits and a control pressure from the trailer brake module. Flow of air to the brakes is controllable either by the trailer brake module or by the spring brake modulator valve arrangement to provide redundancy.Type: GrantFiled: May 3, 2020Date of Patent: July 30, 2024Assignee: KNORR-BREMSE Systeme fuer Nutzfahrzeuge GmbHInventors: Matthew Fry, Martin Mederer, Stefan Pahl, Florian Finkl, Thomas Steer, Christian Staahl
-
Patent number: 12024147Abstract: A brake system for a trailer has first and second pneumatic circuits for supplying air pressure to the wheel ends on the trailer. The air pressure to brake devices at the wheel ends is controllable via a first brake ECU. First and second pressure control valves control pressure from the pneumatic circuits to the respective wheel ends. The system further has a second ECU adapted to electrically control the actuation of the pressure control valves.Type: GrantFiled: May 3, 2020Date of Patent: July 2, 2024Assignee: KNORR-BREMSE Systeme fuer Nutzfahrzeuge GmbHInventors: Matthew Fry, Martin Mederer, Stefan Pahl, Florian Finkl, Thomas Steer, Christian Staahl
-
Publication number: 20220340111Abstract: A brake system for a trailer has first and second pneumatic circuits for supplying air pressure to the wheel ends on the trailer. The air pressure to brake devices at the wheel ends is controllable via a first brake ECU. First and second pressure control valves control pressure from the pneumatic circuits to the respective wheel ends. The system further has a second ECU adapted to electrically control the actuation of the pressure control valves.Type: ApplicationFiled: May 3, 2020Publication date: October 27, 2022Inventors: Matthew FRY, Martin MEDERER, Stefan PAHL, Florian FINKL, Thomas STEER, Christian STAAHL
-
Publication number: 20220219663Abstract: A brake system is provided for a trailer vehicle having a plurality of axles, each of which has a wheel end on a respective side of the vehicle, the brake system including first and second pneumatic circuits for supplying air pressure to brake devices at the wheel ends. The system includes a spring brake modulator valve arrangement adapted to control pressure to spring brakes on the vehicle, which modulator valve arrangement receives an input from at least one of the pneumatic circuits and a control pressure from the trailer brake module. Flow of air to the brakes is controllable either by the trailer brake module or by the spring brake modulator valve arrangement to provide redundancy.Type: ApplicationFiled: May 3, 2020Publication date: July 14, 2022Inventors: Matthew FRY, Martin MEDERER, Stefan PAHL, Florian FINKL, Thomas STEER, Christian STAAHL
-
Patent number: 11262066Abstract: The invention relates to a staggered firing for combustion of wet charge materials, consisting of the following steps: pre-combustion designed as a fluidized bed firing, heat transition in a heat exchanger, dust precipitation, and post-combustion. The staggered firing is characterized in that during the heat transition in the heat exchanger, exhaust gases from the pre-combustion are cooled and combustion air for pre-combustion is heated and then supplied to the pre-combustion.Type: GrantFiled: July 26, 2017Date of Patent: March 1, 2022Assignee: FLORADRY GMBHInventors: Swantje M. Schlederer, Thomas Steer, Hans Werner
-
Publication number: 20190162405Abstract: The invention relates to a staggered firing for combustion of wet charge materials, consisting of the following steps: pre-combustion designed as a fluidized bed firing, heat transition in a heat exchanger, dust precipitation, and post-combustion. The staggered firing is characterized in that during the heat transition in the heat exchanger, exhaust gases from the pre-combustion are cooled and combustion air for pre-combustion is heated and then supplied to the pre-combustion.Type: ApplicationFiled: July 26, 2017Publication date: May 30, 2019Inventors: Swantje M. Schlederer, Thomas Steer, Hans Werner
-
Publication number: 20100158794Abstract: A heat pipe and a method for operating a heat pipe of said type are provided, which heat pipe remains active over a relatively long period of time in particular when used in pressurized gasification atmosphere, that is to say in a hydrogen-rich environment. Also specified is a heat pipe reformer having a heat pipe of said type. By providing a hydrogen extractor in the region of the heat-dissipating end of the heat pipe, the hydrogen which has penetrated into the heat pipe and accumulated there is conducted out of the heat pipe again, such that the heat-exchanging capacity of the heat pipe is maintained. The hydrogen extractor generates a hydrogen concentration gradient or a hydrogen partial pressure gradient between the interior and the exterior of the pipe casing, such that hydrogen which has penetrated into the interior of the heat pipe is diffused into the hydrogen extractor and can be extracted from there.Type: ApplicationFiled: April 4, 2007Publication date: June 24, 2010Inventor: Thomas Steer
-
Patent number: 7507266Abstract: The present invention relates to a method for obtaining combustion gases of high calorific value, wherein carbonaceous materials are allotermically gasified in a fluidized layer containing solid particles, using a gaseous gasifying agent and by supply of heat, and the gases thus produced are separated from the solid particles and withdrawn. Said method is characterized in that the solid particles are indirectly heated in a first descending bed and supplied to a second ascending fluidized bed in which the fluidized layer is formed and gasification takes place for the greatest part. The method further relates to an apparatus for performing said method.Type: GrantFiled: July 7, 2006Date of Patent: March 24, 2009Inventor: Thomas Steer
-
Patent number: 7344427Abstract: The invention relates to a high-pressure discharge lamp of the ceramic metal halide type of the Philips MasterColor® series having power ranges of about 150 W to about 1000 W. Such lamps are provided with a discharge vessel which encloses a discharge space. The discharge vessel has a ceramic wall and is closed by a ceramic plug. An electrode which is located inside the discharge space is connected to an electric conductor by way of a leadthrough element. The leadthrough element projects through the ceramic plug with a close fit and is connected thereto in a gas-tight manner by way of a sealing ceramic. The leadthrough element has a first part which is formed by a cermet at the area of the gas-tight connection.Type: GrantFiled: August 28, 2003Date of Patent: March 18, 2008Assignee: Koninklijke Philips Electronics, N.V.Inventors: Andrew D. Jackson, Ray G. Gibson, III, Sarah A. Carleton, Shiming Wu, Louis N. Kowalczyk, Thomas Steere, Jay J. Palmer, John C. Alderman, John E. Conrad, Sr., Kent L. Collins
-
Patent number: 7331837Abstract: The invention relates to a high-pressure discharge lamp of the ceramic metal halide type of the Philips MasterColor series having a molybdenum coil wrapped around the discharge vessel and at least a portion of the electrode feed through means, and having power ranges of about 150 W to about 1000 W. Such lamps are provided with a discharge vessel which encloses a discharge space. The discharge vessel has a ceramic wall and is closed by a ceramic plug. An electrode which is located inside the discharge space is connected to an electric conductor by way of a leadthrough element. The leadthrough element projects through the ceramic plug with a close fit and is connected thereto in a gastight manner by way of a sealing ceramic. The leadthrough element has a first part which is formed by a cermet at the area of the gastight connection.Type: GrantFiled: September 13, 2004Date of Patent: February 19, 2008Assignee: Koninklijke Philips Electronics, N.V.Inventors: Andrew D. Jackson, Ray G. Gibson, III, Sarah A. Carleton, Shiming Wu, Louis N. Kowalczyk, Thomas Steere, Jay J. Palmer, John C. Alderman, John E. Conrad, Sr., Kent L. Collins
-
Patent number: 7204738Abstract: A method of forming a metal halide discharge tube comprises: arranging a tubular body (110) in an essentially vertical orientation; disposing a loose-fit T-plug (100) having a cylindrical portion (106) and an annular flange (104) in an upper open end of the tubular body (110) so that the cylindrical portion (106) of the T-plug (100) is disposed within the open end of the tubular body (110) in a contact-free, spaced relationship with an inner wall of the tubular body and with the annular flange (104) seating against an annular top end edge surface (108) of the tubular body (100); and firing the tubular body and the loose-fit T-plug to shrink fit the tubular body and the loose-fit T-plug to interfuse the loose-fit T-plug with the upper end of the tubular body in a manner which results in a unitary/monolithic body.Type: GrantFiled: March 3, 2004Date of Patent: April 17, 2007Assignee: Koninklijke Philips Electronics, N.V.Inventors: Kent Collins, Thomas Steere
-
Publication number: 20060265955Abstract: The present invention relates to a method for obtaining combustion gases of high calorific value, wherein carbonaceous materials are allotermically gasified in a fluidized layer containing solid particles, using a gaseous gasifying agent and by supply of heat, and the gases thus produced are separated from the solid particles and withdrawn. Said method is characterized in that the solid particles are indirectly heated in a first descending bed and supplied to a second ascending fluidized bed in which the fluidized layer is formed and gasification takes place for the greatest part. The method further relates to an apparatus for performing said method.Type: ApplicationFiled: July 7, 2006Publication date: November 30, 2006Inventor: Thomas Steer
-
Patent number: 7094264Abstract: The present invention relates to a method for obtaining combustion gases of high calorific value, wherein carbonaceous materials are allothermically gasified in a fluidized layer containing solid particles, using a gaseous gasifying agent and by supply of heat, and the gases thus produced are separated from the solid particles and withdrawn. Said method is characterized in that the solid particles are indirectly heated in a first descending bed and supplied to a second ascending fluidized bed in which the fluidized layer is formed and gasification takes place for the greatest part. The method further relates to an apparatus for performing said method.Type: GrantFiled: February 18, 2005Date of Patent: August 22, 2006Inventor: Thomas Steer
-
Publication number: 20050166457Abstract: The present invention relates to a method for obtaining combustion gases of high calorific value, wherein carbonaceous materials are allothermically gasified in a fluidized layer containing solid particles, using a gaseous gasifying agent and by supply of heat, and the gases thus produced are separated from the solid particles and withdrawn. Said method is characterized in that the solid particles are indirectly heated in a first descending bed and supplied to a second ascending fluidized bed in which the fluidized layer is formed and gasification takes place for the greatest part. The method further relates to an apparatus for performing said method.Type: ApplicationFiled: February 18, 2005Publication date: August 4, 2005Inventor: Thomas Steer
-
Publication number: 20050073256Abstract: The invention relates to a high-pressure discharge lamp of the ceramic metal halide type of the Philips MasterColor® series having power ranges of about 150 W to about 1000 W. Such lamps are provided with a discharge vessel which encloses a discharge space. The discharge vessel has a ceramic wall and is closed by a ceramic plug. An electrode which is located inside the discharge space is connected to an electric conductor by way of a leadthrough element. The leadthrough element projects through the ceramic plug with a close fit and is connected thereto in a gas-tight manner by way of a sealing ceramic. The leadthrough element has a first part which is formed by a cermet at the area of the gas-tight connection.Type: ApplicationFiled: August 28, 2003Publication date: April 7, 2005Inventors: Andrew Jackson, Ray Gibson, Sarah Carleton, Shiming Wu, Louis Kowalczyk, Thomas Steere, Jay Palmer, John Alderman, John Conrad, Kent Collins
-
Patent number: 6861805Abstract: The invention relates to a high-pressure discharge lamp of the ceramic metal halide type of the Philips MasterColor series having a molybdenum coil wrapped around the discharge vessel and at least a portion of the electrode feed through means, and having power ranges of about 150 W to about 1000 W. Such lamps are provided with a discharge vessel which encloses a discharge space. The discharge vessel has a ceramic wall and is closed by a ceramic plug. An electrode which is located inside the discharge space is connected to an electric conductor by way of a leadthrough element. The leadthrough element projects through the ceramic plug with a close fit and is connected thereto in a gastight manner by way of a sealing ceramic. The leadthrough element has a first part which is formed by a cermet at the area of the gastight connection.Type: GrantFiled: May 8, 2001Date of Patent: March 1, 2005Assignee: Koninklijke Philips Electronics N.V.Inventors: Andrew D. Jackson, Ray G. Gibson, III, Sarah A. Carleton, Shiming Wu, Louis N. Kowalczyk, Thomas Steere, Jay J. Palmer, John C. Alderman, John E. Conrad, Sr., Kent L. Collins
-
Publication number: 20050042967Abstract: The invention relates to a high-pressure discharge lamp of the ceramic metal halide type of the Philips MasterColor series having a molybdenum coil wrapped around the discharge vessel and at least a portion of the electrode feed through means, and having power ranges of about 150 W to about 1000 W. Such lamps are provided with a discharge vessel which encloses a discharge space. The discharge vessel has a ceramic wall and is closed by a ceramic plug. An electrode which is located inside the discharge space is connected to an electric conductor by way of a leadthrough element. The leadthrough element projects through the ceramic plug with a close fit and is connected thereto in a gastight manner by way of a sealing ceramic. The leadthrough element has a first part which is formed by a cermet at the area of the gastight connection.Type: ApplicationFiled: September 13, 2004Publication date: February 24, 2005Inventors: Andrew Jackson, Ray Gibson, Sarah Carleton, Shiming Wu, Louis Kowalczyk, Thomas Steere, Jay Palmer, John Alderman, John Conrad, Kent Collins
-
Publication number: 20040263081Abstract: A method of forming a metal halide discharge tube comprises: arranging a tubular body (110) in an essentially vertical orientation; disposing a loose-fit T-plug (100) having a cylindrical portion (106) and an annular flange (104) in an upper open end of the tubular body (110) so that the cylindrical portion (106) of the T-plug (100) is disposed within the open end of the tubular body (110) in a contact-free, spaced relationship with an inner wall of the tubular body and with the annular flange (104) seating against an annular top end edge surface (108) of the tubular body (100); and firing the tubular body and the loose-fit T-plug to shrink fit the tubular body and the loose-fit T-plug to interfuse the loose-fit T-plug with the upper end of the tubular body in a manner which results in a unitary/monolithic body.Type: ApplicationFiled: March 3, 2004Publication date: December 30, 2004Inventors: Kent Collins, Thomas Steere
-
Patent number: 6833677Abstract: The invention relates to a high-pressure discharge lamp of the ceramic metal halide type of the Philips MasterColor® series having power ranges of about 150 W to about 1000 W. Such lamps are provided with a discharge vessel which encloses a discharge space. The discharge vessel has a ceramic wall and is closed by a ceramic plug. An electrode which is located inside the discharge space is connected to an electric conductor by way of a leadthrough element. The leadthrough element projects through the ceramic plug with a close fit and is connected thereto in a gas-tight manner by way of a sealing ceramic. The leadthrough element has a first part which is formed by a cermet at the area of the gas-tight connection.Type: GrantFiled: May 8, 2001Date of Patent: December 21, 2004Assignee: Koninklijke Philips Electronics N.V.Inventors: Andrew D. Jackson, Ray G. Gibson, III, Sarah A. Carleton, Shiming Wu, Louis N. Kowalczyk, Thomas Steere, Jay J. Palmer, John C. Alderman, John E. Conrad, Sr., Kent L. Collins
-
Publication number: 20020185973Abstract: The invention relates to a high-pressure discharge lamp of the ceramic metal halide type of the Philips MasterColor series having a molybdenum coil wrapped around the discharge vessel and at least a portion of the electrode feed through means, and having power ranges of about 150 W to about 1000 W. Such lamps are provided with a discharge vessel which encloses a discharge space. The discharge vessel has a ceramic wall and is closed by a ceramic plug. An electrode which is located inside the discharge space is connected to an electric conductor by way of a leadthrough element. The leadthrough element projects through the ceramic plug with a close fit and is connected thereto in a gastight manner by way of a sealing ceramic. The leadthrough element has a first part which is formed by a cermet at the area of the gastight connection.Type: ApplicationFiled: May 8, 2001Publication date: December 12, 2002Inventors: Andrew D. Jackson, Ray G. Gibson III, Sarah A. Carleton, Shiming Wu, Louis N. Kowalczyk, Thomas Steere, Jay J. Palmer, John C. Alderman, John E. Conrad, Sr., Kent L. Collins