Patents by Inventor Thomas V. Hennessey, Jr.

Thomas V. Hennessey, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11848530
    Abstract: A radio-frequency excited carbon dioxide (CO2) or carbon monoxide (CO) gas laser includes two electrodes, which have passivated surfaces, within a sealed housing. Features in a ceramic slab or a ceramic cylinder located between the electrodes define a gain volume. Surfaces of the ceramic slab or the ceramic cylinder are separated from the passivated surfaces of the electrodes by small gaps to prevent abrasion thereof. Reducing compressive forces that secure these components within the housing further reduces abrasion, thereby extending the operational lifetime of the gas laser.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: December 19, 2023
    Assignee: Coherent, Inc.
    Inventors: Leon A. Newman, Michael Leigh Ermold, James Hyland, Thomas V. Hennessey, Jr., Lanny Laughman
  • Publication number: 20210242650
    Abstract: A radio-frequency excited carbon dioxide (CO2) or carbon monoxide (CO) gas laser includes two electrodes, which have passivated surfaces, within a sealed housing. Features in a ceramic slab or a ceramic cylinder located between the electrodes define a gain volume. Surfaces of the ceramic slab or the ceramic cylinder are separated from the passivated surfaces of the electrodes by small gaps to prevent abrasion thereof. Reducing compressive forces that secure these components within the housing further reduces abrasion, thereby extending the operational lifetime of the gas laser.
    Type: Application
    Filed: January 28, 2021
    Publication date: August 5, 2021
    Applicant: Coherent, Inc.
    Inventors: Leon A. NEWMAN, Michael Leigh ERMOLD, James HYLAND, Thomas V. HENNESSEY, JR., Lanny LAUGHMAN
  • Patent number: 8731015
    Abstract: A compact CO2 slab-laser is contained in a fluid cooled housing having three compartments. One compartment houses discharge electrodes and a laser resonator. Another compartment houses a radio-frequency power supply (RFPS) assembled on a fluid-cooled chill plate and an impedance-matching network. The remaining compartment houses beam-conditioning optics including a spatial filter. The housing and RFPS chill-plate are on a common coolant-fluid circuit having a single input and a single output. The spatial filter is optionally fluid-coolable on the common coolant fluid circuit.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: May 20, 2014
    Assignee: Coherent, Inc.
    Inventors: Leon A. Newman, Adrian Papanide, Mathew David Rzewnicki, Thomas V. Hennessey, Jr.
  • Publication number: 20130259074
    Abstract: A compact CO2 slab-laser is contained in a fluid cooled housing having three compartments. One compartment houses discharge electrodes and a laser resonator. Another compartment houses a radio-frequency power supply (RFPS) assembled on a fluid-cooled chill plate and an impedance-matching network. The remaining compartment houses beam-conditioning optics including a spatial filter. The housing and RFPS chill-plate are on a common coolant-fluid circuit having a single input and a single output. The spatial filter is optionally fluid-coolable on the common coolant fluid circuit.
    Type: Application
    Filed: February 4, 2013
    Publication date: October 3, 2013
    Applicant: COHERENT, INC.
    Inventors: Leon A. NEWMAN, Adrian PAPANIDE, Mathew David RZEWNICKI, Thomas V. HENNESSEY, JR.
  • Patent number: 7545842
    Abstract: In a CO2 laser a pre-ionizer is assembled in a flange configured to be attached to a laser-gas enclosure of the laser over an aperture in a wall of the enclosure. An aperture in the base of the flange is aligned over the aperture in the enclosure wall. The aperture in the pre-ionizer flange is covered by a ceramic membrane. A disc electrode is in contact with the ceramic membrane on a side of the membrane outside of the laser-gas enclosure. An RF potential applied to the disc electrode creates a corona discharge on the side of the ceramic membrane inside the enclosure. The corona discharge ionizes laser gas in the enclosure before RF power is applied to electrodes of the slab laser.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: June 9, 2009
    Assignee: Coherent, Inc.
    Inventors: Christian J. Shackleton, Raul Martin Wong Gutierrez, Thomas V. Hennessey, Jr.
  • Patent number: 7540779
    Abstract: A RF shielded, series inductor, high power impedance matching network interconnector is provided for connecting an RF power supply to electrodes contained in the shielded, hermetically sealed laser tube housing of a slab laser system. The impedance matching interconnector comprises a short length of co-axial conductor and an impedance matching network that includes two L shaped networks. The inner conductor of the co-axial conductor is connected between the power supply output and the impedance matching network. The outer conductor of the co-axial conductor is grounded. The co-axial conductor has an impedance characteristic to match the power supply output impedance. The first L-shaped network includes a first inductor having a first end connected to the inner conductor of the co-axial conductor and a first capacitor connected to the second end of the first inductor and a second plate connected to ground.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: June 2, 2009
    Assignee: Coherent, Inc.
    Inventors: Adrian Papanide, Frederick W. Hauer, Leon A. Newman, Thomas V. Hennessey, Jr., Christian J. Shackleton, Joel Fontanella, Gongxue Hua
  • Publication number: 20090004918
    Abstract: A RF shielded, series inductor, high power impedance matching network interconnector is provided for connecting an RF power supply to electrodes contained in the shielded, hermetically sealed laser tube housing of a slab laser system. The impedance matching interconnector comprises a short length of co-axial conductor and an impedance matching network that includes two L shaped networks. The inner conductor of the co-axial conductor is connected between the power supply output and the impedance matching network. The outer conductor of the co-axial conductor is grounded. The co-axial conductor has an impedance characteristic to match the power supply output impedance. The first L-shaped network includes a first inductor having a first end connected to the inner conductor of the co-axial conductor and a first capacitor connected to the second end of the first inductor and a second plate connected to ground.
    Type: Application
    Filed: March 19, 2008
    Publication date: January 1, 2009
    Inventors: ADRIAN PAPANIDE, Frederick W. Hauer, Leon A. Newman, Thomas V. Hennessey, JR., Christian J. Shackleton, Joel Fontanella, Gongxue Hua
  • Patent number: 7280569
    Abstract: Various electro-optical modulator module designs are presented, which can provide for uniform, symmetric, and efficient heat removal for mode-locking, Q-switching, and/or cavity dumping operations. Heat can be uniformly extracted from an EO crystal without imposing undue stress, thereby preventing birefringence and laser beam degradation. A liquid-cooling approach can be used for high-duty operations, such as mode-locking operations. Efficient heat removal can prevent thermal run-away from electrical heating of the crystal due to the large drop in the electrical resistance of CdTe with increasing temperature when operated above 50° C. RF or video arcing and subsequent damage to the EO crystal can be prevented by surrounding the crystal with a low dielectric constant material that lowers the capacitance coupling to ground, while still maintaining good thermal cooling.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: October 9, 2007
    Assignee: Coherent, Inc.
    Inventors: Lanny Laughman, Thomas V. Hennessey, Jr., Joseph S. Smucz, Vernon A. Seguin, Raymond Michaud