Patents by Inventor Thomas W. Heidemann

Thomas W. Heidemann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8296056
    Abstract: A method of generating an image of a volume ahead of an aerial vehicle is provided. The method comprises determining a position of the aerial vehicle and generating a terrain image corresponding to ground features correlated to the position of the aerial vehicle. Obstacle data pertaining to a set of obstacles ahead of the aerial vehicle is determined with a forward looking sensor. An obstacle overlay image is generated and overlain onto the terrain image to generate a composite image.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: October 23, 2012
    Assignee: Honeywell International Inc.
    Inventors: Robert C. Becker, David W. Meyers, Alan G. Cornett, Thomas W. Heidemann, Long Bui
  • Patent number: 7911375
    Abstract: Systems and methods for Doppler beam sharpening in a radar altimeter are provided. In one embodiment, a method comprises receiving a return signal at a radar altimeter receiver and applying a first gate to the return signal to select at least a first component of the return signal. Spectral analysis is performed on the first component of the return signal to generate a plurality of frequency bins, wherein each frequency bin is centered around a different frequency across a Doppler shift frequency spectrum for the first component of the return signal. The method further comprises tracking the first component of the return signal, selecting a first frequency bin of the plurality of frequency bins based on the Doppler shift frequency of the first component of the return signal, and outputting a portion of the first component of the return signal falling within the first frequency bin for further processing.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: March 22, 2011
    Assignee: Honeywell International Inc.
    Inventors: Benjamin J. Winstead, Thomas W. Heidemann
  • Publication number: 20100302088
    Abstract: Systems and methods for Doppler beam sharpening in a radar altimeter are provided. In one embodiment, a method comprises receiving a return signal at a radar altimeter receiver and applying a first gate to the return signal to select at least a first component of the return signal. Spectral analysis is performed on the first component of the return signal to generate a plurality of frequency bins, wherein each frequency bin is centered around a different frequency across a Doppler shift frequency spectrum for the first component of the return signal. The method further comprises tracking the first component of the return signal, selecting a first frequency bin of the plurality of frequency bins based on the Doppler shift frequency of the first component of the return signal, and outputting a portion of the first component of the return signal falling within the first frequency bin for further processing.
    Type: Application
    Filed: June 2, 2009
    Publication date: December 2, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Benjamin J. Winstead, Thomas W. Heidemann
  • Publication number: 20100268458
    Abstract: A method of generating an image of a volume ahead of an aerial vehicle is provided. The method comprises determining a position of the aerial vehicle and generating a terrain image corresponding to ground features correlated to the position of the aerial vehicle. Obstacle data pertaining to a set of obstacles ahead of the aerial vehicle is determined with a forward looking sensor. An obstacle overlay image is generated and overlain onto the terrain image to generate a composite image.
    Type: Application
    Filed: April 20, 2009
    Publication date: October 21, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Robert C. Becker, David W. Meyers, Alan G. Cornett, Thomas W. Heidemann, Long Bui
  • Patent number: 6980153
    Abstract: A radar altimeter for vehicles that operate with a load suspended underneath is described. The radar altimeter includes a transmitter configured to transmit radar signals toward the ground, a receiver configured to receive reflected radar signals from the ground and from the suspended load, and at least one altitude processing channel configured to receive signals from the receiver. The radar altimeter also includes a load profile channel configured to receive signals from the receiver. The load profile channel limits an altitude processing sensitivity of the radar altimeter between the radar altimeter and the suspended load to reduce a likelihood that the radar altimeter will process signals reflected by the suspended load.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: December 27, 2005
    Assignee: Honeywell International Inc.
    Inventors: James R. Hager, Thomas W. Heidemann, Michael H. Brockopp
  • Patent number: 6950056
    Abstract: A method for calculating a center frequency and a bandwidth for a radar doppler filter is herein described. The center frequency and bandwidth are calculated to provide radar performance over varying terrain and aircraft altitude, pitch, and roll. The method includes receiving an antenna mounting angle, a slant range, and velocity vectors in body coordinates, calculating a range swath doppler velocity, a track and phase swath bandwidth, and a phase swath doppler velocity. The method continues by calculating a range swath center frequency based on the range swath doppler velocity, calculating a phase swath center frequency based on the phase swath doppler velocity, and calculating a level and verify swath bandwidth based upon the track and phase swath bandwidth.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: September 27, 2005
    Assignee: Honeywell International Inc.
    Inventors: James R. Hager, Thomas W. Heidemann, Thomas R. Jicha
  • Patent number: 6897804
    Abstract: A method for calculating a center frequency and a bandwidth for a radar doppler filter is herein described. The center frequency and bandwidth are calculated to provide radar performance over varying terrain and aircraft altitude, pitch, and roll. The method includes receiving an antenna mounting angle, a slant range, and velocity vectors in body coordinates, calculating a range swath doppler velocity, a track and phase swath bandwidth, and a phase swath doppler velocity. The method continues by calculating a range swath center frequency based on the range swath doppler velocity, calculating a phase swath center frequency based on the phase swath doppler velocity, and calculating a level and verify swath bandwidth based upon the track and phase swath bandwidth.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: May 24, 2005
    Assignee: Honeywell International Inc.
    Inventors: James R. Hager, Thomas W. Heidemann, Thomas R. Jicha
  • Patent number: 6738563
    Abstract: A method for reducing effects of terrain return fading due to summation of out of phase radar returns in determining locations of radar targets is described. The method comprises determining an interferometric angle, &PHgr;, to a radar target based on at least one radar return and filtering the interferometric angle, &PHgr;, by adjusting an effect of terrain features contributing to the interferometric angle, &PHgr;, proportionally to a degree of radar return fading resulting from the terrain features of the radar targets. A corrected interferometric angle, &PHgr;out., is then provided, based at least in part on the filtering.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: May 18, 2004
    Assignee: Honeywell International Inc.
    Inventors: James R. Hager, Lavell Jordan, Thomas W. Heidemann
  • Publication number: 20030214431
    Abstract: A method for calculating a center frequency and a bandwidth for a radar doppler filter is herein described. The center frequency and bandwidth are calculated to provide radar performance over varying terrain and aircraft altitude, pitch, and roll. The method includes receiving an antenna mounting angle, a slant range, and velocity vectors in body coordinates, calculating a range swath doppler velocity, a track and phase swath bandwidth, and a phase swath doppler velocity. The method continues by calculating a range swath center frequency based on the range swath doppler velocity, calculating a phase swath center frequency based on the phase swath doppler velocity, and calculating a level and verify swath bandwidth based upon the track and phase swath bandwidth.
    Type: Application
    Filed: May 13, 2002
    Publication date: November 20, 2003
    Inventors: James R. Hager, Thomas W. Heidemann, Thomas R. Jicha