Patents by Inventor Thomas W. Mossberg

Thomas W. Mossberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7203151
    Abstract: An optical data storage system directs a reference beam and a data beam to a storage material having an inhomogeneous linewidth. The data beam is modulated to contain data to be stored in the storage material. The reference beam and the data beam illuminate storage cells of the storage material, causing data to be stored. The reference beam and the data beam spatially scan the cells and are frequency swept during their respective spatial scans. Data is retrieved from the cells by illuminating the storage material with the reference beam to produce a reconstructed data beam. In an embodiment, the reference beam and the data beam overlap and illuminate the storage cells simultaneously. The reconstructed data beam is detected as a heterodyne signal produced by mixing the reconstructed data beam and the reference beam in a detector.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: April 10, 2007
    Assignee: Intel Corporation
    Inventors: Alan E. Johnson, Eric S. Maniloff, Thomas W. Mossberg
  • Patent number: 7194164
    Abstract: An optical apparatus comprises a planar optical waveguide having at least one set of diffractive elements and confining in at least one transverse spatial dimension optical signals propagating therein. Each diffractive element set routes, between corresponding input and output optical ports, a corresponding diffracted portion of an input optical signal propagating in the waveguide that is successively incident on the diffractive elements and is diffracted by the diffractive element set. The optical signals propagate in the waveguide in corresponding diffractive-region optical transverse modes in regions where the diffractive elements are present, and in corresponding non-diffractive-region optical transverse modes in regions where the diffractive elements are absent.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: March 20, 2007
    Assignee: LightSmyth Technologies Inc
    Inventors: Dmitri Iazikov, Christoph M. Greiner, Thomas W. Mossberg
  • Patent number: 7190856
    Abstract: A reconfigurable add-drop multiplexer (R-OADM) comprises an array of channel waveguides coupling two groups of diffractive element sets on a slab waveguide. The channel waveguides include switchable reflectors or are coupled to other channel waveguides by optical switches. Switching a reflector to reflect or setting a switch to couple two waveguides results in a corresponding wavelength channel being added or dropped. Switching the reflector to transmit or setting the switch to uncouple the two waveguides allows the corresponding wavelength channel to pass through the R-OADM without being added or dropped.
    Type: Grant
    Filed: March 25, 2006
    Date of Patent: March 13, 2007
    Assignee: LightSmyth Technologies Inc
    Inventors: Dmitri Iazikov, Christoph M. Greiner, Thomas W. Mossberg
  • Patent number: 7190859
    Abstract: A slab optical waveguide confines in one transverse dimension optical signals propagating in two dimensions therein, and has a set of diffractive elements collectively arranged so as to exhibit positional variation in amplitude, optical separation, or spatial phase. The diffractive elements are collectively arranged so as to apply a transfer function to an input optical signal to produce an output optical signal. The transfer function is determined at least in part by said positional variation in amplitude, optical separation, or spatial phase. The waveguide and diffractive elements are arranged so as to confine only one of the input and output optical signals to propagate in the waveguide so that the optical signal thus confined is successively incident on the diffractive elements, while the other optical signal propagates unconfined by the waveguide in a direction having a substantial component along the confined dimension of the waveguide.
    Type: Grant
    Filed: September 17, 2006
    Date of Patent: March 13, 2007
    Assignee: LightSmyth Technologies Inc
    Inventors: Christoph M. Greiner, Dmitri Iazikov, Thomas W. Mossberg
  • Patent number: 7190858
    Abstract: An optical time delay apparatus comprises: a multi-wavelength optical source; a diffractive element set imparting a wavelength-dependent delay on signals routed from the source to a 1×N optical switch; and N diffractive element sets routing signals from the 1×N switch to an output port. The optical propagation delay between the source and the output port varies according to the operational state of the source and the 1×N switch. A photodetector may receive the time-delayed signal at the output port.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: March 13, 2007
    Assignee: LightSmyth Technologies Inc
    Inventors: Christoph M. Greiner, Thomas W. Mossberg, Dmitri Iazikov
  • Patent number: 7181103
    Abstract: An optical apparatus comprises an optical interconnect structure defining one or more optical source and receiver ports and one or more interconnect optical signal pathways connecting corresponding optical signal source and receiver ports. The optical interconnect structure comprises an optical waveguide defining a portion of each interconnect optical signal pathway. Each interconnect pathway includes a wavefront diffractive transformation region and a corresponding set of diffractive elements thereof. Each diffractive element set diffractively transforms a corresponding diffracted portion of an incident signal with a corresponding design input signal wavefront into an emergent signal with a corresponding design output signal wavefront. For at least one diffractive element set, only one of the corresponding design input or output signal wavefronts is confined in at least one transverse dimension by the optical waveguide, while the other design wavefront propagates without confinement by the optical waveguide.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: February 20, 2007
    Assignee: LightSmyth Technologies Inc
    Inventors: Christoph M. Greiner, Dmitri Iazikov, Thomas W. Mossberg
  • Patent number: 7123794
    Abstract: A method comprises: formulating simulated design input and output optical signals propagating from/to respective designed optical input and output ports as optical beams substantially confined by a planar optical waveguide; computing an interference pattern between the simulated input and output signals; and computationally deriving an arrangement of diffractive elements of a diffractive element set from the computed interference pattern. When the diffractive element set is formed in the planar optical waveguide, each diffractive element routes, between corresponding input and output optical ports, a corresponding diffracted portion of an input optical signal propagating in the planar optical waveguide that is diffracted by the diffractive element set. The input optical signal is successively incident on the diffractive elements.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: October 17, 2006
    Assignee: LightSmyth Technologies Inc
    Inventors: Christoph M. Greiner, Dmitri Iazikov, Thomas W. Mossberg
  • Patent number: 7120334
    Abstract: An optical apparatus comprises a planar optical waveguide having at least two sets of diffractive elements. The planar optical waveguide substantially confines in at least one transverse spatial dimension optical signals propagating therein. The two diffractive element sets define an optical resonator that supports at least one resonant optical cavity mode. An optical signal in one of the resonant optical cavity modes is successively incident on the diffractive elements of each of the diffractive element sets.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: October 10, 2006
    Assignee: LightSmyth Technologies Inc
    Inventors: Christoph M. Greiner, Dmitri Iazikov, Thomas W. Mossberg
  • Patent number: 7116453
    Abstract: Method and apparatus are disclosed for optical packet decoding, waveform generation, and wavelength multiplexing/demultiplexing using a programmed holographic structure. A configurable programmed holographic structure is disclosed. A configurable programmed holographic structure may be dynamically re-configured through the application of control mechanisms which alter operative holographic structures.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: October 3, 2006
    Assignee: LightSmyth Technologies Inc.
    Inventor: Thomas W. Mossberg
  • Patent number: 7065298
    Abstract: Optical communication systems include a central station that encodes data transmitted to multiplexing (mux) stations or user stations. The central station also decodes data received from the mux stations or user stations. Encoding and decoding are performed using codes, such as composite codes, that designate sources and destinations for data. The mux stations, user stations, and the central station have address encoders and decoders that use, for example, fiber Bragg gratings to encode or decode optical signals according to a code such as a composite code derived by combining codes from one or more sets of codes. A passive optical network comprises one or more levels of mux stations that use such address decoders and encoders to receive, decode, and encode data for transmission toward a central station or a user station.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: June 20, 2006
    Assignee: Intel Corporation
    Inventors: Michael J. Munroe, Alan E. Johnson, Anders Grunnet-Jepsen, Eric S. Maniloff, Thomas W. Mossberg, John N. Sweetser
  • Patent number: 7063260
    Abstract: A spectrally-encoded label comprises a spectrally-selective optical element having a label spectral signature. The label spectral signature is determined according to a spectral-encoding scheme so as to represent predetermined label information within the spectral encoding scheme. The label emits output light in response to input light selected by the label spectral signature of the optical element. A spectrally-encoded label system further comprises an optical detector sensitive to the output light emitted from the label, and a decoder operatively coupled to the detector for extracting the label information according to the spectral encoding scheme, and may also include a light source providing the input light for illuminating the label.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: June 20, 2006
    Assignee: LightSmyth Technologies Inc
    Inventors: Thomas W. Mossberg, Christoph M. Greiner, Dmitri Iazikov, David S. Alavi
  • Patent number: 7062128
    Abstract: Method and apparatus are contemplated for receiving from an input, an optical signal in a volume hologram comprising a transfer function that may comprise temporal or spectral information, and spatial transformation information; diffracting the optical signal; and transmitting the diffracted optical signal to an output. A plurality of inputs and outputs may be coupled to the volume hologram. The transformation may be a linear superposition of transforms, with each transform acting on an input signal or on a component of an input signal. Each transform may act to focus one or more input signals to one or more output ports. A volume hologram may be made by various techniques, and from various materials. A transform function may be calculated by simulating the collision of a design input signal with a design output signal.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: June 13, 2006
    Assignee: Lightsmyth Technologies INC
    Inventor: Thomas W. Mossberg
  • Patent number: 7054517
    Abstract: An apparatus comprises: a planar optical waveguide having sets of locking diffractive elements and means for routing optical signals; and corresponding lasers. Lasers launch signals into the planar waveguide that are successively incident on elements of the locking diffractive element sets, which route fractions of the signals back to the lasers as locking feedback signals. The routing means route between lasers and output port(s) portions of those fractions of signals transmitted by locking diffractive element sets. Locking diffractive element sets may be formed in channel waveguides formed in the planar waveguide, or in slab waveguide region(s) of the planar waveguide. Multiple routing means may comprise routing diffractive element sets formed in a slab waveguide region of the planar waveguide, or may comprise an arrayed waveguide grating formed in the planar waveguide. The apparatus may comprise a multiple-wavelength optical source.
    Type: Grant
    Filed: August 21, 2004
    Date of Patent: May 30, 2006
    Assignee: LightSmyth Technologies Inc
    Inventors: Thomas W. Mossberg, Dmitri Iazikov, Christoph M. Greiner
  • Patent number: 7009743
    Abstract: Method and apparatus are disclosed for optical packet decoding, waveform generation and wavelength multiplexing/demultiplexing using a programmed holographic structure. A configurable programmed holographic structure is disclosed. A configurable programmed holographic structure may be dynamically re-configured through the application of control mechanisms which alter operative holographic structures.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: March 7, 2006
    Assignee: LightSmyth Technologies Inc
    Inventor: Thomas W. Mossberg
  • Patent number: 6993223
    Abstract: An optical apparatus comprises an optical element having at least two sets of diffractive elements, each diffractive element comprising at least one diffracting region thereof. At least one diffractive element set collectively routes, between a corresponding input optical port and a corresponding output optical port, at least a portion of a corresponding optical signal incident on the diffracting regions that is diffracted thereby as it propagates from the corresponding input optical port. The optical element includes at least one spatial region thereof wherein multiple diffracting regions of a first diffractive element set are present and diffracting regions of a second diffractive element set are absent. The diffractive elements of each set, the diffracting regions thereof, and each said spatial region are arranged so as to impart desired spatial characteristics, desired spectral characteristics, or desired temporal characteristics onto the corresponding routed portion of the optical signal.
    Type: Grant
    Filed: November 26, 2004
    Date of Patent: January 31, 2006
    Assignee: LightSmyth Technologies, Inc.
    Inventors: Christoph M. Greiner, Dmitri Iazikov, Thomas W. Mossberg
  • Patent number: 6990276
    Abstract: A planar optical waveguide has sets of diffractive elements, each routing between input and output optical ports diffracted portions of an input optical signal. The diffractive elements are arranged so that the impulse response function of the diffractive element set comprises a reference temporal waveform or its time-reverse. A planar optical waveguide has N×M sets of diffractive elements, each routing between corresponding input and output optical ports corresponding diffracted portions of an input optical signal. The N×M diffractive element sets, N×M input optical ports, and N 1×M optical switches enable routing of an input optical signal any of the N input optical sources to any of the M output optical ports based on the operational state of the corresponding 1×M optical switch.
    Type: Grant
    Filed: May 29, 2004
    Date of Patent: January 24, 2006
    Assignee: LightSmyth Technologies, Inc.
    Inventors: Lawrence D. Brice, Christoph M. Greiner, Thomas W. Mossberg, Dmitri Iazikov
  • Patent number: 6987911
    Abstract: A spectral filter comprises a planar optical waveguide having at least one set of diffractive elements. The waveguide confines in one transverse dimension an optical signal propagating in two other dimensions therein. The waveguide supports multiple transverse modes. Each diffractive element set routes, between input and output ports, a diffracted portion of the optical signal propagating in the planar waveguide and diffracted by the diffractive elements. The diffracted portion of the optical signal reaches the output port as a superposition of multiple transverse modes. A multimode optical source may launch the optical signal into the planar waveguide, through the corresponding input optical port, as a superposition of multiple transverse modes. A multimode output waveguide may receive, through the output port, the diffracted portion of the optical signal. Multiple diffractive element sets may route corresponding diffracted portions of optical signal between one or more corresponding input and output ports.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: January 17, 2006
    Assignee: LightSmyth Technologies, Inc.
    Inventors: Thomas W. Mossberg, Christoph M. Greiner, Dmitri Iazikov
  • Patent number: 6985656
    Abstract: An optical apparatus (spectral filter, temporal encoder, or other) comprises a planar optical waveguide having at least one set of diffractive elements. Each diffractive element set routes by diffraction therefrom a portion of the optical signal propagating in the planar waveguide. The planar waveguide includes at least one material having thermo-optic properties chosen so as to yield a designed temperature dependence of spectral and/or temporal characteristics of the diffracted portion of the optical signal. Variations of material refractive indices, physical dimensions, and/or optical mode distributions with temperature may at least partly compensate one another to yield the designed temperature dependence. Optical materials with ?n/?T of various magnitudes and signs may be variously incorporated into the waveguide core and/or cladding.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: January 10, 2006
    Assignee: LightSmyth Technologies Inc
    Inventors: Dmitri Iazikov, Thomas W. Mossberg, Christoph M. Greiner
  • Patent number: 6965716
    Abstract: A distributed optical structure comprises a set of diffractive elements. Individual diffractive element transfer functions collectively yield an overall transfer function between entrance and exit ports. Diffractive elements are defined relative to virtual contours and include diffracting region(s) altered to diffract, reflect, and/or scatter incident optical fields (altered index, surface, etc). Element and/or overall set transfer functions (amplitude and/or phase) are determined by: longitudinal and/or angular displacement of diffracting region(s) relative to a virtual contour (facet-displacement grayscale); longitudinal displacement of diffractive elements relative to a virtual contour (element-displacement grayscale); and/or virtual contour(s) lacking a diffractive element (proportional-line-density gray scale).
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: November 15, 2005
    Assignee: LightSmyth Technologies Inc
    Inventors: Christoph M. Greiner, Dmitri Iazikov, Thomas W. Mossberg
  • Patent number: 6965464
    Abstract: Method and apparatus are disclosed for optical packet decoding, waveform generation and wavelength multiplexing/demultiplexing using a programmed holographic structure. A configurable programmed holographic structure is disclosed. A configurable programmed holographic structure may be dynamically re-configured through the application of control mechanisms which alter operative holographic structures.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: November 15, 2005
    Assignee: LightSmyth Technologies Inc
    Inventor: Thomas W. Mossberg