Patents by Inventor Thomas W. Stouffer

Thomas W. Stouffer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230011211
    Abstract: A charging system for an Implantable Medical Device (IMD) is disclosed having a charging coil and one or more sense coils preferably housed in a charging coil assembly coupled to an electronics module by a cable. The charging coil is preferably a wire winding, while the sense coils are preferably formed in one or more traces of a circuit board. One or more voltages induced on the one or more sense coils can be used to determine one or more parameters (magnitude, phase angle, resonant frequency) indicative of the position between the charging coil and the IMD, which position may include the radial offset and possibly also the depth of the charging coil relative to the IMD. Knowing the position, the power of the magnetic field produced by the charging coil can be adjusted to compensate for the position.
    Type: Application
    Filed: September 15, 2022
    Publication date: January 12, 2023
    Inventors: Daniel Aghassian, Thomas W. Stouffer, Jonathan Larcom, Gaurav Gupta
  • Patent number: 11471692
    Abstract: A charging system for an Implantable Medical Device (IMD) is disclosed having a charging coil and one or more sense coils preferably housed in a charging coil assembly coupled to an electronics module by a cable. The charging coil is preferably a wire winding, while the sense coils are preferably formed in one or more traces of a circuit board. One or more voltages induced on the one or more sense coils can be used to determine one or more parameters (magnitude, phase angle, resonant frequency) indicative of the position between the charging coil and the IMD, which position may include the radial offset and possibly also the depth of the charging coil relative to the IMD. Knowing the position, the power of the magnetic field produced by the charging coil can be adjusted to compensate for the position.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: October 18, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Thomas W. Stouffer, Jonathan Larcom, Gaurav Gupta
  • Patent number: 11129996
    Abstract: A charging system for an Implantable Medical Device (IMD) is disclosed having a charging coil and one or more sense coils. The charging coil and one or more sense coils are preferably housed in a charging coil assembly coupled to an electronics module by a cable. The charging coil is preferably a wire winding, while the one or more sense coils are concentric with the charging coil and preferably formed in one or more traces of a circuit board. One or more voltages induced on the one or more sense coils can be used to determine the resonant frequency of the charging coil/IMD coupled system. The determined resonant frequency can then be used to determine the position of the charging coil relative to the IMD. The magnetic field produced from the charging coil may also be driven at the resonant frequency to optimize power transfer to the IMD.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: September 28, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Thomas W. Stouffer, Lev Freidin
  • Publication number: 20210236829
    Abstract: A sensing electrode selection algorithm is disclosed for use with an implantable pulse generator having an electrode array. The algorithm automatically selects optimal sensing electrodes in the array to be used with a pre-determined stimulation therapy appropriate for the patient. The algorithm preferably senses stimulation artifacts using different sensing electrodes, and more specifically different sensing electrode pairs as is appropriate when differential sensing is used. The algorithm further preferably senses these stimulation artifacts with the patient placed in two or more postures. The algorithm processes the stimulation artifact features measured at the different sensing electrodes and at the different postures to automatically determine one or more sensing electrode pairs that best distinguishes the two or more postures given the prescribed stimulation therapy.
    Type: Application
    Filed: December 23, 2020
    Publication date: August 5, 2021
    Inventors: Tianhe Zhang, Rosana Esteller, Thomas W. Stouffer
  • Patent number: 10960219
    Abstract: A charging system for an Implantable Medical Device (IMD) is disclosed having a charging coil and one or more sense coils. The charging coil and one or more sense coils are preferably housed in a charging coil assembly coupled to an electronics module by a cable. The charging coil is preferably a wire winding, while the one or more sense coils are concentric with the charging coil and preferably formed in one or more traces of a circuit board. One or more voltages induced on the one or more sense coils can be used to determine whether the charging coil is (i) centered, (ii) not centered but not misaligned, or (iii) misaligned, with respect to the IMD being charged, which three conditions sequentially comprise lower coupling between the charging coil and the IMD. A charging algorithm is also disclosed that control charging dependent on these conditions.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: March 30, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Thomas W. Stouffer
  • Patent number: 10881870
    Abstract: A charging system for an Implantable Medical Device (IMD) is disclosed having a charging coil and one or more sense coils. The charging coil and one or more sense coils are preferably housed in a charging coil assembly coupled to an electronics module by a cable. The charging coil is preferably a wire winding, while the one or more sense coils are concentric with the charging coil and preferably formed in one or more traces of a circuit board. The magnitude of one or more voltages induced on the one or more sense coils can be measured to determine the position of the charging coil relative to the IMD, and in particular whether the charging coil is (i) centered, (ii) not centered but not misaligned, or (iii) misaligned, with respect to the IMD being charged, which three conditions sequentially comprise lower coupling between the charging coil and the IMD.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: January 5, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Thomas W. Stouffer
  • Publication number: 20200188680
    Abstract: A charging system for an Implantable Medical Device (IMD) is disclosed having a charging coil and one or more sense coils. The charging coil and one or more sense coils are preferably housed in a charging coil assembly coupled to an electronics module by a cable. The charging coil is preferably a wire winding, while the one or more sense coils are concentric with the charging coil and preferably formed in one or more traces of a circuit board. The magnitude of one or more voltages induced on the one or more sense coils can be measured to determine the position of the charging coil relative to the IMD, and in particular whether the charging coil is (i) centered, (ii) not centered but not misaligned, or (iii) misaligned, with respect to the IMD being charged, which three conditions sequentially comprise lower coupling between the charging coil and the IMD.
    Type: Application
    Filed: February 20, 2020
    Publication date: June 18, 2020
    Inventors: Daniel Aghassian, Thomas W. Stouffer
  • Publication number: 20200155858
    Abstract: A charging system for an Implantable Medical Device (IMD) is disclosed having a charging coil and one or more sense coils. The charging coil and one or more sense coils are preferably housed in a charging coil assembly coupled to an electronics module by a cable. The charging coil is preferably a wire winding, while the one or more sense coils are concentric with the charging coil and preferably formed in one or more traces of a circuit board. One or more voltages induced on the one or more sense coils can be used to determine whether the charging coil is (i) centered, (ii) not centered but not misaligned, or (iii) misaligned, with respect to the IMD being charged, which three conditions sequentially comprise lower coupling between the charging coil and the IMD. A charging algorithm is also disclosed that control charging dependent on these conditions.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 21, 2020
    Inventors: Daniel Aghassian, Thomas W. Stouffer
  • Patent number: 10632318
    Abstract: An external charger for an implantable medical device (IMD) is disclosed including a three-axis magnetic field sensor at the center of a primary charging coil. The sensor first senses a magnetic charging field produced by the coil with no IMD present (vector A). The sensor then senses the field in useful operation when such field is being provided to the IMD (vector B). From these vectors, a vector C is calculated representing the magnetic field reflected from the IMD. Vector C can be used to determine a vector D, representing the position of the IMD in physical space relative to the external charger. Information comprising one or more volumes can be stored in the external charger, and compared with vector D to determine whether charger-to-IMD positioning will provide an adequate amount of power to the IMD, and/or to provide an indication of charger-to-IMD alignment.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: April 28, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Thomas W. Stouffer
  • Patent number: 10632319
    Abstract: A charging system for an Implantable Medical Device (IMD) is disclosed having a charging coil and one or more sense coils preferably housed in a charging coil assembly coupled to an electronics module by a cable. The charging coil is preferably a wire winding, while the sense coils are preferably formed in one or more traces of a circuit board. One or more voltages induced on the one or more sense coils can be used to determine a phase angle between the voltage and a driving signal for the charging coil. The determined phase angle can then be used to determine the position of the charging coil relative to the IMD. Additionally, more than one parameter (phase angle, magnitude, resonant frequency) may be determined using the voltage may be used to determine position, including the radial offset and depth of the charging coil relative to the IMD.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: April 28, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Thomas W. Stouffer, Jonathan Larcom, Gaurav Gupta
  • Patent number: 10603501
    Abstract: A charging system for an Implantable Medical Device (IMD) is disclosed having a charging coil and one or more sense coils. The charging coil and one or more sense coils are preferably housed in a charging coil assembly coupled to an electronics module by a cable. The charging coil is preferably a wire winding, while the one or more sense coils are concentric with the charging coil and preferably formed in one or more traces of a circuit board. The magnitude of one or more voltages induced on the one or more sense coils can be measured to determine the position of the charging coil relative to the IMD, and in particular whether the charging coil is (i) centered, (ii) not centered but not misaligned, or (iii) misaligned, with respect to the IMD being charged, which three conditions sequentially comprise lower coupling between the charging coil and the IMD.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: March 31, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Thomas W. Stouffer
  • Patent number: 10576294
    Abstract: A charging system for an Implantable Medical Device (IMD) is disclosed having a charging coil and one or more sense coils. The charging coil and one or more sense coils are preferably housed in a charging coil assembly coupled to an electronics module by a cable. The charging coil is preferably a wire winding, while the one or more sense coils are concentric with the charging coil and preferably formed in one or more traces of a circuit board. One or more voltages induced on the one or more sense coils can be used to determine whether the charging coil is (i) centered, (ii) not centered but not misaligned, or (iii) misaligned, with respect to the IMD being charged, which three conditions sequentially comprise lower coupling between the charging coil and the IMD. A charging algorithm is also disclosed that control charging dependent on these conditions.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: March 3, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Thomas W. Stouffer
  • Publication number: 20190299013
    Abstract: A charging system for an Implantable Medical Device (IMD) is disclosed having a charging coil and one or more sense coils preferably housed in a charging coil assembly coupled to an electronics module by a cable. The charging coil is preferably a wire winding, while the sense coils are preferably formed in one or more traces of a circuit board. One or more voltages induced on the one or more sense coils can be used to determine a phase angle between the voltage and a driving signal for the charging coil. The determined phase angle can then be used to determine the position of the charging coil relative to the IMD. Additionally, more than one parameter (phase angle, magnitude, resonant frequency) may be determined using the voltage may be used to determine position, including the radial offset and depth of the charging coil relative to the IMD.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 3, 2019
    Inventors: Daniel Aghassian, Thomas W. Stouffer, Jonathan Larcom, Gaurav Gupta
  • Patent number: 10363426
    Abstract: A charging system for an Implantable Medical Device (IMD) is disclosed having a charging coil and one or more sense coils preferably housed in a charging coil assembly coupled to an electronics module by a cable. The charging coil is preferably a wire winding, while the sense coils are preferably formed in one or more traces of a circuit board. One or more voltages induced on the one or more sense coils can be used to determine a phase angle between the voltage and a driving signal for the charging coil. The determined phase angle can then be used to determine the position of the charging coil relative to the IMD. Additionally, more than one parameter (phase angle, magnitude, resonant frequency) may be determined using the voltage may be used to determine position, including the radial offset and depth of the charging coil relative to the IMD.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: July 30, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Thomas W. Stouffer, Jonathan Larcom, Gaurav Gupta
  • Patent number: 10342984
    Abstract: A charging system for an Implantable Medical Device (IMD) includes a split charging coil for generating a magnetic field to provide power to the IMD. The split charging coil includes a first coil portion and a second coil portion, each of which can be formed as a mechanical winding of an insulated conductor. The first and second coil portions are connected to each other in a way that substantially reduces or eliminates any current-carrying path that is routed radially with respect to the coil. As a result, the split coil produces a uniform magnetic field that enables a more accurate determination of alignment between the coil and the IMD than is available using traditional charging coils.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: July 9, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Thomas W. Stouffer
  • Publication number: 20190151668
    Abstract: A charging system for an Implantable Medical Device (IMD) is disclosed having a charging coil and one or more sense coils. The charging coil and one or more sense coils are preferably housed in a charging coil assembly coupled to an electronics module by a cable. The charging coil is preferably a wire winding, while the one or more sense coils are concentric with the charging coil and preferably formed in one or more traces of a circuit board. One or more voltages induced on the one or more sense coils can be used to determine whether the charging coil is (i) centered, (ii) not centered but not misaligned, or (iii) misaligned, with respect to the IMD being charged, which three conditions sequentially comprise lower coupling between the charging coil and the IMD. A charging algorithm is also disclosed that control charging dependent on these conditions.
    Type: Application
    Filed: January 21, 2019
    Publication date: May 23, 2019
    Inventors: Daniel Aghassian, Thomas W. Stouffer
  • Patent number: 10226637
    Abstract: A charging system for an Implantable Medical Device (IMD) is disclosed having a charging coil and one or more sense coils. The charging coil and one or more sense coils are preferably housed in a charging coil assembly coupled to an electronics module by a cable. The charging coil is preferably a wire winding, while the one or more sense coils are concentric with the charging coil and preferably formed in one or more traces of a circuit board. One or more voltages induced on the one or more sense coils can be used to determine whether the charging coil is (i) centered, (ii) not centered but not misaligned, or (iii) misaligned, with respect to the IMD being charged, which three conditions sequentially comprise lower coupling between the charging coil and the IMD. A charging algorithm is also disclosed that control charging dependent on these conditions.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: March 12, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Thomas W. Stouffer
  • Patent number: 10173064
    Abstract: An implantable medical device (IMD) is disclosed having measurement circuitry for measuring one or more currents in the IMD, such as the currents drawn from various power supply voltages. Such currents are measured without disrupting normal IMD operation, and can be telemetered from the IMD for review. Switching circuitry in line with the current being measured is temporarily opened for a time period to disconnect the power supply voltage from the circuitry being powered. A voltage across a capacitance in parallel with the circuitry is measured when the switching circuitry is opened and again closed at the end of the time period, with the circuitry drawing power from the charged capacitance during this time period. The average current drawn by the power supply voltage is determined using the difference in the measured voltages, the known capacitance, and the time period between the measurements.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: January 8, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Robert Graham Lamont, Damon Moazen, Robert D. Ozawa, Thomas W. Stouffer
  • Publication number: 20180272139
    Abstract: An external charger for an implantable medical device (IMD) is disclosed including a three-axis magnetic field sensor at the center of a primary charging coil. The sensor first senses a magnetic charging field produced by the coil with no IMD present (vector A). The sensor then senses the field in useful operation when such field is being provided to the IMD (vector B). From these vectors, a vector C is calculated representing the magnetic field reflected from the IMD. Vector C can be used to determine a vector D, representing the position of the IMD in physical space relative to the external charger. Information comprising one or more volumes can be stored in the external charger, and compared with vector D to determine whether charger-to-IMD positioning will provide an adequate amount of power to the IMD, and/or to provide an indication of charger-to-IMD alignment.
    Type: Application
    Filed: February 6, 2018
    Publication date: September 27, 2018
    Inventor: Thomas W. Stouffer
  • Patent number: 10058696
    Abstract: An implantable control module for an electrical stimulation system includes a connector to couple to a lead or lead extension; an electronics housing coupled to the connector and having a first major surface, a second major surface, and at least one side surface; and an electronic subassembly disposed within the electronics housing. The electronics housing includes a first portion formed of a first conductive material and a second portion formed of a second conductive material. The second portion forms at least part of the first major surface and extends to form an adjacent region of the side surface or the second major surface. In some embodiments, the first conductive material has a resistivity that is no more than 50% of a resistivity of the second conductive material. In some embodiments, the first conductive material is titanium and the second conductive material is a titanium alloy.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: August 28, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Thomas W. Stouffer