Patents by Inventor Thomas W Tighe

Thomas W Tighe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10522855
    Abstract: A method for creating an oxygen depleted gas in a fuel cell system, including operating a fuel cell stack at a desired cathode stoichiometry at fuel cell system shutdown to displace a cathode exhaust gas with an oxygen depleted gas. The method further includes closing a cathode flow valve and turning off a compressor to stop the flow of cathode air.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: December 31, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Thomas W. Tighe, Steven G. Goebel, Gary M. Robb, Abdullah B. Alp, Balasubramanian Lakshmanan, Joseph N. Lovria
  • Publication number: 20160043417
    Abstract: A method for creating an oxygen depleted gas in a fuel cell system, including operating a fuel cell stack at a desired cathode stoichiometry at fuel cell system shutdown to displace a cathode exhaust gas with an oxygen depleted gas. The method further includes closing a cathode flow valve and turning off a compressor to stop the flow of cathode air.
    Type: Application
    Filed: October 19, 2015
    Publication date: February 11, 2016
    Inventors: THOMAS W. TIGHE, STEVEN G. GOEBEL, GARY M. ROBB, ABDULLAH B. ALP, BALASUBRAMANIAN LAKSHMANAN, JOSEPH N. LOVRIA
  • Publication number: 20150093673
    Abstract: A fuel cell stack assembly is disclosed that includes a porous member disposed within a flow path for a reactant. A fluid collection member is provided within the flow path adjacent to and in fluid communication with the porous member. The porous member and the fluid collection member cooperate to collect liquid water from the reactant flowing in the flow path, wherein the collected liquid water may be drained from the fluid collection member.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 2, 2015
    Inventors: Jon P. Owejan, Thomas A. Trabold, William H. Pettit, Thomas W. Tighe, James M. Keogan, Eric J. Connor, Steven G. Goebel
  • Patent number: 8974975
    Abstract: A method for determining a rate of accumulation of nitrogen in an anode side of a fuel cell stack. The method includes determining a concentration of nitrogen in an anode loop and determining a number of moles of nitrogen in the anode loop. The method also includes determining a rate of accumulation of nitrogen in the anode loop and determining a permeability factor of nitrogen through fuel cell membranes in the fuel cell stack using the determined rate of accumulation of nitrogen in the anode loop.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: March 10, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel C. Di Fiore, Thomas W. Tighe
  • Patent number: 8877392
    Abstract: A fuel cell stack assembly is disclosed that includes a porous member disposed within a flow path for a reactant. A fluid collection member is provided within the flow path adjacent to and in fluid communication with the porous member. The porous member and the fluid collection member cooperate to collect liquid water from the reactant flowing in the flow path, wherein the collected liquid water may be drained from the fluid collection member.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: November 4, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jon P. Owejan, Thomas A. Trabold, William H. Pettit, Thomas W. Tighe, James M. Keogan, Eric J. Connor, Steven G. Goebel
  • Patent number: 8828615
    Abstract: A fuel cell system that determines the concentration of hydrogen gas in an anode loop. The fuel cell system includes at least one fuel cell, an anode inlet, an anode outlet, an anode loop, a source of hydrogen gas and an injector for injecting the hydrogen gas. First and second pressure sensors are provided in the anode loop and are spaced a known distance from each other. A controller responsive to the output signals from the first and second pressure sensors filters the sensor signals from the first and second pressure sensors and determines the concentration of hydrogen gas in the anode loop based on the time difference between the filtered sensor signal from the first pressure sensor and the filtered sensor signal from the second pressure sensor.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: September 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Thomas W. Tighe, Daniel C. Di Fiore
  • Patent number: 8795907
    Abstract: A fuel cell system is disclosed that employs an expander for recovering mechanical energy from a cathode exhaust fluid produced by the fuel cell system to generate torque. The expander is coupled to a shaft of a compressor with a freewheel mechanism, wherein the freewheel mechanism transfers the torque from the expander to the compressor when a rate of rotation of a driveshaft of the expander is greater than the rate of rotation of the shaft of the compressor, and selectively militates against the expander acting as a restrictor to the shaft of the compressor when a rate of rotation of the driveshaft of the expander is substantially equal to or less than a rate of rotation of the shaft of the compressor.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: August 5, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Marc Becker, Remy Fontaine, Thomas W. Tighe
  • Patent number: 8735022
    Abstract: A product comprising a fuel cell component comprising a substrate and a coating overlying the substrate, the coating comprising nanoparticles having sizes ranging from 2 to 100 nanometers.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: May 27, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Harald Schlag, Ralf Senner, Thomas A. Trabold, Thomas W. Tighe, Gayatri Vyas, Keith E. Newman
  • Publication number: 20140093639
    Abstract: A product comprising a fuel cell component comprising a substrate and a coating overlying the substrate, the coating comprising nanoparticles having sizes ranging from 2 to 100 nanometers.
    Type: Application
    Filed: August 9, 2006
    Publication date: April 3, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Harald Schlag, Ralf Senner, Thomas A. Trabold, Thomas W. Tighe, Gayatri Vyas, Keith E. Newman
  • Patent number: 8551664
    Abstract: A fuel cell system is disclosed that employs a humidifier and an oxygen sensor for measuring the oxygen concentration in the cathode exhaust gas from the fuel cell stack to determine a system diagnostic, such as a fluid leak from or across the humidifier.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: October 8, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Thomas W. Tighe, Robert L. Fuss, Robert N. Carter, Bruce J. Clingerman
  • Patent number: 8501364
    Abstract: A fuel cell assembly is disclosed that utilizes a water transport structure extending from fuel cell plates of the assembly into fuel cell assembly manifolds, wherein the water transport structure facilitates the transport of liquid water from the fuel cell plates thereby minimizing the accumulation of liquid water and ice in the fuel cell stack.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: August 6, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Jon P. Owejan, Thomas W. Tighe, Jeffrey A. Rock, Thomas A. Trabold, Steven R. Falta
  • Patent number: 8394547
    Abstract: A fuel cell assembly is disclosed that utilizes a water transport structure extending from fuel cell plates of the assembly into fuel cell assembly manifolds, wherein the water transport structure facilitates the transport of liquid water from the fuel cell plates thereby minimizing the accumulation of liquid water and ice in the fuel cell stack.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: March 12, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Jon P. Owejan, Thomas W. Tighe, Jeffrey A. Rock, Thomas A. Trabold, Steven R. Falta
  • Patent number: 8389047
    Abstract: A method for depositing a hydrophilic coating on flow field plates or bipolar plates and manifolds in a fuel cell stack after the stack is assembled. The method includes preparing a solution that contains hydrophilic nano-particles suspended in a suitable solvent. The cathode and anode inlet and outlet manifolds and the cathode and anode flow channels are filled with the solution. The solution is then pumped out of the stack using, for example, a stream of nitrogen. The stack is allowed to dry, using heat if desirable, to provide a film of the nano-particles formed on the anode and cathode flow channels and manifolds within the stack.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: March 5, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Jon P. Owejan, Thomas A. Trabold, Thomas W. Tighe
  • Publication number: 20130040211
    Abstract: A method for determining a rate of accumulation of nitrogen in an anode side of a fuel cell stack. The method includes determining a concentration of nitrogen in an anode loop and determining a number of moles of nitrogen in the anode loop. The method also includes determining a rate of accumulation of nitrogen in the anode loop and determining a permeability factor of nitrogen through fuel cell membranes in the fuel cell stack using the determined rate of accumulation of nitrogen in the anode loop.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 14, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Daniel C. Di Fiore, Thomas W. Tighe
  • Publication number: 20120288780
    Abstract: A fuel cell system that determines the concentration of hydrogen gas in an anode loop. The fuel cell system includes at least one fuel cell, an anode inlet, an anode outlet, an anode loop, a source of hydrogen gas and an injector for injecting the hydrogen gas. First and second pressure sensors are provided in the anode loop and are spaced a known distance from each other. A controller responsive to the output signals from the first and second pressure sensors filters the sensor signals from the first and second pressure sensors and determines the concentration of hydrogen gas in the anode loop based on the time difference between the filtered sensor signal from the first pressure sensor and the filtered sensor signal from the second pressure sensor.
    Type: Application
    Filed: May 10, 2011
    Publication date: November 15, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Thomas W. TIGHE, Daniel C. DI FIORE
  • Patent number: 8268492
    Abstract: An electric insulator for a fuel cell stack with a plurality of fuel cell plates is provided. The electric insulator includes an insulation layer having a water management feature adapted to militate against liquid water contacting the fuel cell plates. Fuel cell stacks having the water management feature are also described.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: September 18, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Jon P. Owejan, Steven R. Falta, Thomas W. Tighe
  • Patent number: 8232014
    Abstract: A method for reducing the probability of an air/hydrogen front in a fuel cell stack is disclosed that includes closing anode valves for an anode side of the fuel cell stack to permit a desired quantity of hydrogen to be left in the anode side upon shutdown and determining a schedule to inject hydrogen during the time the fuel cell stack is shutdown. The pressure on an anode input line is determined and a discrete amount of hydrogen is injected into the anode side of the stack according to the determined schedule by opening anode input line valves based on the determined pressure along the anode input line so as to inject the hydrogen into the anode side of the stack.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: July 31, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: David A. Arthur, Dieter Kaimann, Thomas W. Tighe, Steven G. Goebel, John P. Salvador, Gary M. Robb, Daniel I. Harris, Joseph Nicholas Lovria, Balasubramanian Lakshmanan, Daniel T. Folmsbee
  • Patent number: 8168340
    Abstract: A bipolar plate includes angled facets oriented to form V-shaped projections on the plate edge. Liquid leaving the reactant channels is drawn back into the V-shaped grooves of the projections, leaving no liquid to obstruct the channel exit openings. The bipolar plate includes one portion of the bipolar plate offset from another portion of the bipolar plate so as to expose the reactant channels. The liquid is drawn toward the end portions of the reactant channels by capillary forces, while the gas flows can exit near the beginning of the offset portion. A fuel cell stack includes angled facets that are rotated to lie in the plane of the bipolar plate edges. The edges are chamfered so the channel exit openings of the reactant channels are at the tip portions thereof, thus allowing the liquid to flow away from the channel exit openings and the gas to exit freely.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: May 1, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Lee C. Whitehead, Steven R. Falta, Thomas A. Trabold, Jon P. Owejan, Thomas W. Tighe
  • Patent number: 8101322
    Abstract: A plate for a fuel cell is disclosed, wherein an inlet aperture is disposed at a first end of the plate and an outlet aperture is disposed at a second end of the plate. The plate includes a first side and a second side. The first side of the plate has a flow field formed therein between the inlet aperture and the outlet aperture, the flow field having a plurality of flow channels formed therein, the plurality of flow channels in communication with a plurality of outlet ports formed in the plate. The second side of the plate has a plurality of drainage channels formed therein adjacent the outlet aperture, the plurality of drainage channels in fluid communication with the outlet ports and the outlet aperture, wherein a cross-sectional area occupied by each of the plurality of flow channels is substantially equal to a cross-sectional area occupied by each of the plurality of drainage channels.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: January 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Jon P. Owejan, Thomas W. Tighe, Thomas A. Trabold
  • Patent number: 8034502
    Abstract: A device and method to extract water from a moisture-rich fuel cell flowpath. A water transport unit is integrated into the fuel cell so that liquid water stagnation within flow channels and manifolds is reduced. In one embodiment, the device includes numerous flowpaths that include an active region and an inactive region. The water transport unit includes a hydrophilic member such that upon passage of a fluid with the excess water through the inactive region of the device flowpath and into the presence of the hydrophilic member, it absorbs excess water from the fluid.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: October 11, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Jon P. Owejan, Thomas W. Tighe, Thomas A. Trabold, Jeffrey A. Rock