Patents by Inventor Thomas Z. Srnak

Thomas Z. Srnak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11612881
    Abstract: A process for preparing a silver-containing catalyst for the oxidation of ethylene to ethylene oxide (EO) including the steps of: providing a support having pores; providing a silver-containing impregnation solution; adding an amount of surfactant to the impregnation solution; contacting the support with the surfactant-containing impregnation solution; and removing at least a portion of the impregnation solution prior to fixing the silver upon the carrier in a manner which preferentially removes impregnation solution not contained in the pores. The use of the surfactant results in improved drainage of the silver impregnation solution from the carrier exteriors during the catalyst synthesis. As a result, the amount of silver-containing impregnation solution necessary for the synthesis of the EO catalyst was reduced by up to 15% without reducing the catalyst performance.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: March 28, 2023
    Assignee: Dow Technology Investments LLC
    Inventors: Daniel Grohol, Thomas Z. Srnak, Cathy L. Tway, George L. Athens, Kyle R. Essenmacher, Gary M. Seabolt, Tim D. Munro
  • Publication number: 20210178367
    Abstract: A process for preparing a silver-containing catalyst for the oxidation of ethylene to ethylene oxide (EO) including the steps of: providing a support having pores; providing a silver-containing impregnation solution; adding an amount of surfactant to the impregnation solution; contacting the support with the surfactant-containing impregnation solution; and removing at least a portion of the impregnation solution prior to fixing the silver upon the carrier in a manner which preferentially removes impregnation solution not contained in the pores. The use of the surfactant results in improved drainage of the silver impregnation solution from the carrier exteriors during the catalyst synthesis. As a result, the amount of silver-containing impregnation solution necessary for the synthesis of the EO catalyst was reduced by up to 15% without reducing the catalyst performance.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 17, 2021
    Inventors: Daniel Grohol, Thomas Z. Srnak, Cathy L. Tway, George L. Athens, Kyle R. Essenmacher, Gary M. Seabolt, Tim D. Munro
  • Patent number: 9353044
    Abstract: The invention provides a method for the reductive amination of diethanolamine to form a product composition that includes piperazine (PIP) and aminoethylethanolamine (AEEA). A catalyst with a transitional alumina/second metal oxide support and a mixture of catalytic metals is used for the reaction which results in low levels of non-PIP and non-AEEA side products.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: May 31, 2016
    Assignee: Dow Global Technologies, LLC
    Inventors: Stephen W. King, Sadeka Onam, Thomas Z. Srnak
  • Publication number: 20140371452
    Abstract: The invention provides a method for the reductive amination of diethanolamine to form a product composition that includes piperazine (PIP) and aminoethylethanolamine (AEEA). A catalyst with a transitional alumina/second metal oxide support and a mixture of catalytic metals is used for the reaction which results in low levels of non-PIP and non-AEEA side products.
    Type: Application
    Filed: November 14, 2012
    Publication date: December 18, 2014
    Inventors: Stephen W. King, Sadeka Onam, Thomas Z. Srnak
  • Patent number: 8618108
    Abstract: The present invention provides strategies for making cyclic triamines. Reactant media including certain precursors and/or certain types of catalysts can be converted into cyclic triamines with improved conversion and selectivity. The strategies can be incorporated into reactions that involve transamination schemes and/or reductive amination schemes. In the case of transamination, for instance, using transamination to cause ring closure of higher amines in the presence of a suitable catalyst leads to desired cyclic triamines with notable conversion and yield. In the case of reductive amination, reacting suitable polyfunctional precursors in the presence of a suitable catalyst also yields cyclic triamines via ring closure with notable selectivity and conversion. Both transamination and reductive amination methodologies can be practiced under much milder temperatures than are used when solely acid catalysts are used. Preferred embodiments can produce reaction mixtures that are generally free of salt by-products.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: December 31, 2013
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Stephen W. King, Stefan K. Mierau, Thomas Z. Srnak
  • Patent number: 8383861
    Abstract: The present invention relates to processes for the manufacture of one or more ethanolamines and one or more ethyleneamines starting from the reaction of ethylene oxide with ammonia to produce one or more ethanolamines and the conversion of the ethanolamine(s) to ethyleneamine(s). The present invention also relates to separating alkylethyleneamines from ethyleneamines.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: February 26, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: David Do, Christopher H. Domke, Jacinto Lopez-Toledo, David M. Petraitis, Thomas Z. Srnak
  • Patent number: 8273884
    Abstract: The present invention provides strategies for making cyclic triamines. Reactant media including certain precursors and/or certain types of catalysts can be converted into cyclic triamines with improved conversion and selectivity. The strategies can be incorporated into reactions that involve transamination schemes and/or reductive amination schemes. In the case of transamination, for instance, using transamination to cause ring closure of higher amines in the presence of a suitable catalyst leads to desired cyclic triamines with notable conversion and yield. In the case of reductive amination, reacting suitable polyfunctional precursors in the presence of a suitable catalyst also yields cyclic triamines via ring closure with notable selectivity and conversion. Both transamination and reductive amination methodologies can be practiced under much milder temperatures than are used when solely acid catalysts are used. Preferred embodiments can produce reaction mixtures that are generally free of salt by-products.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: September 25, 2012
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Stephen W. King, Thomas Z. Srnak, Stefan K. Mierau
  • Patent number: 8188318
    Abstract: The present invention provides methods of manufacturing ethyleneamines that makes use of an ethyleneamine-generating process that is coupled to a transamination process. The combination of an ethyleneamine-generating process with a transamination process improves the mix flexibility that can be obtained from the single process allowing the production of ethyleneamine compositions having an improved and more desirable product mix.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: May 29, 2012
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: David M. Petraitis, Stephen W. King, Thomas Z. Srnak
  • Publication number: 20100094008
    Abstract: The present invention provides strategies for making cyclic triamines. Reactant media including certain precursors and/or certain types of catalysts can be converted into cyclic triamines with improved conversion and selectivity. The strategies can be incorporated into reactions that involve transamination schemes and/or reductive amination schemes. In the case of transamination, for instance, using transamination to cause ring closure of higher amines in the presence of a suitable catalyst leads to desired cyclic triamines with notable conversion and yield. In the case of reductive amination, reacting suitable polyfunctional precursors in the presence of a suitable catalyst also yields cyclic triamines via ring closure with notable selectivity and conversion. Both transamination and reductive amination methodologies can be practiced under much milder temperatures than are used when solely acid catalysts are used. Preferred embodiments can produce reaction mixtures that are generally free of salt by-products.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 15, 2010
    Inventors: Stephen W. King, Thomas Z. Srnak, Stefan K. Mierau
  • Publication number: 20100094007
    Abstract: The present invention provides strategies for making cyclic triamines. Reactant media including certain precursors and/or certain types of catalysts can be converted into cyclic triamines with improved conversion and selectivity. The strategies can be incorporated into reactions that involve transamination schemes and/or reductive amination schemes. In the case of transamination, for instance, using transamination to cause ring closure of higher amines in the presence of a suitable catalyst leads to desired cyclic triamines with notable conversion and yield. In the case of reductive amination, reacting suitable polyfunctional precursors in the presence of a suitable catalyst also yields cyclic triamines via ring closure with notable selectivity and conversion. Both transamination and reductive amination methodologies can be practiced under much milder temperatures than are used when solely acid catalysts are used. Preferred embodiments can produce reaction mixtures that are generally free of salt by-products.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 15, 2010
    Inventors: Stephen W. King, Thomas Z. Srnak, Stefan K. Mierau
  • Publication number: 20100087684
    Abstract: The present invention relates to processes for the manufacture of one or more ethanolamines and one or more ethyleneamines starting from the reaction of ethylene oxide with ammonia to produce one or more ethanolamines and the conversion of the ethanolamine(s) to ethyleneamine(s). The present invention also relates to separating alkylethyleneamines from ethyleneamines.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 8, 2010
    Inventors: David Do, Christopher H. Domke, Jacinto Lopez-Toledo, David M. Petraitis, Thomas Z. Srnak