Patents by Inventor Thor Juneau

Thor Juneau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11799449
    Abstract: A microelectromechanical system (MEMS) resonator includes a resonant semiconductor structure, drive electrode, sense electrode and electrically conductive shielding structure. The first drive electrode generates a time-varying electrostatic force that causes the resonant semiconductor structure to resonate mechanically, and the first sense electrode generates a timing signal in response to the mechanical resonance of the resonant semiconductor structure. The electrically conductive shielding structure is disposed between the first drive electrode and the first sense electrode to shield the first sense electrode from electric field lines emanating from the first drive electrode.
    Type: Grant
    Filed: November 30, 2022
    Date of Patent: October 24, 2023
    Assignee: SiTime Corporation
    Inventors: David Raymond Pedersen, Aaron Partridge, Thor Juneau
  • Patent number: 11545959
    Abstract: A microelectromechanical system (MEMS) resonator includes a resonant semiconductor structure, drive electrode, sense electrode and electrically conductive shielding structure. The first drive electrode generates a time-varying electrostatic force that causes the resonant semiconductor structure to resonate mechanically, and the first sense electrode generates a timing signal in response to the mechanical resonance of the resonant semiconductor structure. The electrically conductive shielding structure is disposed between the first drive electrode and the first sense electrode to shield the first sense electrode from electric field lines emanating from the first drive electrode.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: January 3, 2023
    Assignee: SiTime Corporation
    Inventors: David Raymond Pedersen, Aaron Partridge, Thor Juneau
  • Patent number: 11444600
    Abstract: A microelectromechanical system (MEMS) resonator includes a resonant semiconductor structure, drive electrode, sense electrode and electrically conductive shielding structure. The first drive electrode generates a time-varying electrostatic force that causes the resonant semiconductor structure to resonate mechanically, and the first sense electrode generates a timing signal in response to the mechanical resonance of the resonant semiconductor structure. The electrically conductive shielding structure is disposed between the first drive electrode and the first sense electrode to shield the first sense electrode from electric field lines emanating from the first drive electrode.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: September 13, 2022
    Assignee: SiTime Corporation
    Inventors: David Raymond Pedersen, Aaron Partridge, Thor Juneau
  • Patent number: 11012049
    Abstract: A microelectromechanical system (MEMS) resonator includes a resonant semiconductor structure, drive electrode, sense electrode and electrically conductive shielding structure. The first drive electrode generates a time-varying electrostatic force that causes the resonant semiconductor structure to resonate mechanically, and the first sense electrode generates a timing signal in response to the mechanical resonance of the resonant semiconductor structure. The electrically conductive shielding structure is disposed between the first drive electrode and the first sense electrode to shield the first sense electrode from electric field lines emanating from the first drive electrode.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: May 18, 2021
    Assignee: SiTime Corporation
    Inventors: David Raymond Pedersen, Aaron Partridge, Thor Juneau
  • Patent number: 10439590
    Abstract: A microelectromechanical system (MEMS) resonator includes a resonant semiconductor structure, drive electrode, sense electrode and electrically conductive shielding structure. The first drive electrode generates a time-varying electrostatic force that causes the resonant semiconductor structure to resonate mechanically, and the first sense electrode generates a timing signal in response to the mechanical resonance of the resonant semiconductor structure. The electrically conductive shielding structure is disposed between the first drive electrode and the first sense electrode to shield the first sense electrode from electric field lines emanating from the first drive electrode.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: October 8, 2019
    Assignee: SiTime Corporation
    Inventors: David Raymond Pedersen, Aaron Partridge, Thor Juneau
  • Patent number: 10003320
    Abstract: A microelectromechanical system (MEMS) resonator includes a resonant semiconductor structure, drive electrode, sense electrode and electrically conductive shielding structure. The first drive electrode generates a time-varying electrostatic force that causes the resonant semiconductor structure to resonate mechanically, and the first sense electrode generates a timing signal in response to the mechanical resonance of the resonant semiconductor structure. The electrically conductive shielding structure is disposed between the first drive electrode and the first sense electrode to shield the first sense electrode from electric field lines emanating from the first drive electrode.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: June 19, 2018
    Assignee: SiTime Corporation
    Inventors: David Raymond Pedersen, Aaron Partridge, Thor Juneau
  • Patent number: 9667223
    Abstract: A microelectromechanical system (MEMS) resonator includes a resonant semiconductor structure, drive electrode, sense electrode and electrically conductive shielding structure. The first drive electrode generates a time-varying electrostatic force that causes the resonant semiconductor structure to resonate mechanically, and the first sense electrode generates a timing signal in response to the mechanical resonance of the resonant semiconductor structure. The electrically conductive shielding structure is disposed between the first drive electrode and the first sense electrode to shield the first sense electrode from electric field lines emanating from the first drive electrode.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: May 30, 2017
    Assignee: SiTime Corporation
    Inventors: David Raymond Pedersen, Aaron Partridge, Thor Juneau
  • Patent number: 9252740
    Abstract: A MEMS resonator system that reduces interference signals arising from undesired capacitive coupling between different system elements. The system, in one embodiment, includes a MEMS resonator, electrodes, and at least one resonator electrode shield. In certain embodiments, the resonator electrode shield ensures that the resonator electrodes interact with either one or more shunting nodes or the active elements of the MEMS resonator by preventing or reducing, among other things, capacitive coupling between the resonator electrodes and the support and auxiliary elements of the MEMS resonator structure. By reducing the deleterious effects of interfering signals using one or more resonator electrode shields, a simpler, lower interference, and more efficient system relative to prior art approaches is presented.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: February 2, 2016
    Assignee: SiTime Corporation
    Inventors: David Raymond Pedersen, Aaron Partridge, Thor Juneau
  • Patent number: 8749315
    Abstract: A MEMS resonator system that reduces interference signals arising from undesired capacitive coupling between different system elements. The system, in one embodiment, includes a MEMS resonator, electrodes, and at least one resonator electrode shield. In certain embodiments, the resonator electrode shield ensures that the resonator electrodes interact with either one or more shunting nodes or the active elements of the MEMS resonator by preventing or reducing, among other things, capacitive coupling between the resonator electrodes and the support and auxiliary elements of the MEMS resonator structure. By reducing the deleterious effects of interfering signals using one or more resonator electrode shields, a simpler, lower interference, and more efficient system relative to prior art approaches is presented.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: June 10, 2014
    Assignee: SiTime Corporation
    Inventors: David Raymond Pedersen, Aaron Partridge, Thor Juneau
  • Publication number: 20140028410
    Abstract: A MEMS resonator system that reduces interference signals arising from undesired capacitive coupling between different system elements. The system, in one embodiment, includes a MEMS resonator, electrodes, and at least one resonator electrode shield. In certain embodiments, the resonator electrode shield ensures that the resonator electrodes interact with either one or more shunting nodes or the active elements of the MEMS resonator by preventing or reducing, among other things, capacitive coupling between the resonator electrodes and the support and auxiliary elements of the MEMS resonator structure. By reducing the deleterious effects of interfering signals using one or more resonator electrode shields, a simpler, lower interference, and more efficient system relative to prior art approaches is presented.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Inventors: David Raymond Pedersen, Aaron Partridge, Thor Juneau
  • Patent number: 8570904
    Abstract: A system for determining node locations comprises an interface for receiving a first set of measurements at a first set of nodes, the first set of nodes having known locations. The system further comprising an interface for receiving a second set of measurements at a node having an unknown location, and a processor configured for determining a location of the node with unknown location based at least in part on the first set of measurements and the second set of measurements.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: October 29, 2013
    Assignee: Dust Networks, Inc.
    Inventors: Mark Lemkin, Thor Juneau, Lance R. Doherty
  • Patent number: 8283987
    Abstract: One embodiment of the present invention sets forth a MEMS resonator system that reduces interference signals arising from undesired capacitive coupling between different system elements. The system includes a MEMS resonator, two or more resonator electrodes, and at least one resonator electrode shield. The resonator electrode shield ensures that the resonator electrodes interact with either one or more shunting nodes or the active elements of the MEMS resonator by preventing or reducing, among other things, capacitive coupling between the resonator electrodes and the support and auxiliary elements of the MEMS resonator structure. By reducing the deleterious effects of interfering signals using one or more resonator electrode shields, a simpler, lower interference, and more efficient system relative to prior art approaches is presented.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: October 9, 2012
    Assignee: SiTime Corporation
    Inventors: David Raymond Pedersen, Aaron Partridge, Thor Juneau
  • Publication number: 20120087272
    Abstract: A system for determining node locations comprises an interface for receiving a first set of measurements at a first set of nodes, the first set of nodes having known locations. The system further comprising an interface for receiving a second set of measurements at a node having an unknown location, and a processor configured for determining a location of the node with unknown location based at least in part on the first set of measurements and the second set of measurements.
    Type: Application
    Filed: December 20, 2011
    Publication date: April 12, 2012
    Applicant: DUST NETWORKS, INC.
    Inventors: Mark Lemkin, Thor Juneau, Lance R. Doherty
  • Patent number: 8102784
    Abstract: A system for determining node locations comprises an interface for receiving a first set of measurements at a first set of nodes, the first set of nodes having known locations. The system further comprising an interface for receiving a second set of measurements at a node having an unknown location, and a processor configured for determining a location of the node with unknown location based at least in part on the first set of measurements and the second set of measurements.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: January 24, 2012
    Assignee: Dust Networks, Inc.
    Inventors: Mark Lemkin, Thor Juneau, Lance R. Doherty
  • Publication number: 20110018648
    Abstract: One embodiment of the present invention sets forth a MEMS resonator system that reduces interference signals arising from undesired capacitive coupling between different system elements. The system includes a MEMS resonator, two or more resonator electrodes, and at least one resonator electrode shield. The resonator electrode shield ensures that the resonator electrodes interact with either one or more shunting nodes or the active elements of the MEMS resonator by preventing or reducing, among other things, capacitive coupling between the resonator electrodes and the support and auxiliary elements of the MEMS resonator structure. By reducing the deleterious effects of interfering signals using one or more resonator electrode shields, a simpler, lower interference, and more efficient system relative to prior art approaches is presented.
    Type: Application
    Filed: October 4, 2010
    Publication date: January 27, 2011
    Inventors: David Raymond Redersen, Aaron Partridge, Thor Juneau
  • Patent number: 7808332
    Abstract: One embodiment of the present invention sets forth a MEMS resonator system that reduces interference signals arising from undesired capacitive coupling between different system elements. The system includes a MEMS resonator, two or more resonator electrodes, and at least one resonator electrode shield. The resonator electrode shield ensures that the resonator electrodes interact with either one or more shunting nodes or the active elements of the MEMS resonator by preventing or reducing, among other things, capacitive coupling between the resonator electrodes and the support and auxiliary elements of the MEMS resonator structure. By reducing the deleterious effects of interfering signals using one or more resonator electrode shields, a simpler, lower interference, and more efficient system relative to prior art approaches is presented.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: October 5, 2010
    Assignee: SiTime Corporation
    Inventors: David Raymond Pedersen, Aaron Partridge, Thor Juneau
  • Patent number: 6892576
    Abstract: Accelerometer offset is reduced by forming mass support structures within an inner periphery of the mass, affixing the mass support structures to the substrate by at least one anchor positioned near the mass' center of mass, and affixing the sensing fingers proximate to the anchor. The mass support structures can be affixed to the substrate using a single anchor or multiple anchors that are positioned close together. The sensing fingers can be affixed to the substrate or to the mass support structures. The mass is typically suspended from within its periphery but toward its outer periphery.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: May 17, 2005
    Assignee: Analog Devices, Inc.
    Inventors: Howard R. Samuels, David C. Hollocher, Michael Judy, Thor Juneau
  • Patent number: 6822370
    Abstract: A microactuator is disclosed including one or more stationary plates formed on a substrate, a mirror base plate on which a mirror is formed, and one or more actuation plates coupled to the mirror base plate by one or more microspring mechanisms. The mirror base plate, the one or more actuation plates and the one or more microspring mechanisms are suspended over the stationary plates by one or more anchors. The stationary plates and the actuation plates are formed of a doped material so as to be electrically conductive. Upon application of a voltage potential between the respective plates, the actuation plates are pulled down toward the stationary plates, thus exerting a drive force on the base mirror plate to actuate the mirror between switching positions.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: November 23, 2004
    Assignee: Analog Devices, Inc.
    Inventors: William A. Clark, Thor Juneau, James Doscher
  • Publication number: 20040055382
    Abstract: Accelerometer offset is reduced by forming mass support structures within an inner periphery of the mass, affixing the mass support structures to the substrate by at least one anchor positioned near the mass' center of mass, and affixing the sensing fingers proximate to the anchor. The mass support structures can be affixed to the substrate using a single anchor or multiple anchors that are positioned close together. The sensing fingers can be affixed to the substrate or to the mass support structures. The mass is typically suspended from within its periphery but toward its outer periphery.
    Type: Application
    Filed: July 18, 2003
    Publication date: March 25, 2004
    Inventors: Howard R. Samuels, David C. Hollocher, Michael Judy, Thor Juneau
  • Patent number: 6703679
    Abstract: A microfabricated device includes a substrate having a device layer and substantially filled, isolating trenches; a doped region of material formed by photolithographically defining a region for selective doping of said device layer, selectively doping said region, and thermally diffusing said dopant; circuits on said device layer formed using a substantially standard circuit technology; and at least one structure trench in the substrate which completes the definition of electrically isolated micromechanical structural elements.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: March 9, 2004
    Assignee: Analog Devices, IMI, Inc.
    Inventors: Mark A. Lemkin, William A. Clark, Thor Juneau, Allen W. Roessig