Patents by Inventor Thorsten Hofmann

Thorsten Hofmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11733186
    Abstract: The present application relates to a scanning probe microscope comprising a probe arrangement for analyzing at least one defect of a photolithographic mask or of a wafer, wherein the scanning probe microscope comprises: (a) at least one first probe embodied to analyze the at least one defect; (b) means for producing at least one mark, by use of which the position of the at least one defect is indicated on the mask or on the wafer; and (c) wherein the mark is embodied in such a way that it may be detected by a scanning particle beam microscope.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: August 22, 2023
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Gabriel Baralia, Christof Baur, Klaus Edinger, Thorsten Hofmann, Michael Budach
  • Publication number: 20230238209
    Abstract: An apparatus for analyzing and/or processing a sample with a particle beam, comprising: a sample stage for holding the sample; a providing unit for providing the particle beam comprising: an opening for guiding the particle beam to a processing position on the sample; and a shielding element for shielding an electric field generated by charges accumulated on the sample; wherein the shielding element covers the opening, is embodied in sheetlike fashion and comprises an electrically conductive material; wherein the shielding element comprises a convex section, this section being convex in relation to the sample stage; and wherein the convex section has a through opening for the particle beam to pass through to the sample.
    Type: Application
    Filed: March 15, 2023
    Publication date: July 27, 2023
    Inventors: Nicole Auth, Michael Budach, Thorsten Hofmann, Jens Oster
  • Publication number: 20230081844
    Abstract: A method for particle beam-induced processing of a defect of a microlithographic photomask, including the steps of: a1) providing an image of at least a portion of the photomask, b1) determining a geometric shape of a defect in the image as a repair shape, c1) subdividing the repair shape into a number of n pixels in accordance with a first rasterization, d1) subdividing the repair shape into a number of m pixels in accordance with a second rasterization, the second rasterization emerging from a subpixel displacement of the first rasterization, e1) providing an activating particle beam and a process gas at each of the n pixels of the repair shape in accordance with the first rasterization, and f1) providing the activating particle beam and the process gas at each of the m pixels of the repair shape in accordance with the second rasterization.
    Type: Application
    Filed: September 8, 2022
    Publication date: March 16, 2023
    Inventors: Thorsten Hofmann, Michael Budach
  • Publication number: 20210247336
    Abstract: The present application relates to a scanning probe microscope comprising a probe arrangement for analyzing at least one defect of a photolithographic mask or of a wafer, wherein the scanning probe microscope comprises: (a) at least one first probe embodied to analyze the at least one defect; (b) means for producing at least one mark, by use of which the position of the at least one defect is indicated on the mask or on the wafer; and (c) wherein the mark is embodied in such a way that it may be detected by a scanning particle beam microscope.
    Type: Application
    Filed: April 1, 2021
    Publication date: August 12, 2021
    Inventors: Gabriel Baralia, Christof Baur, Klaus Edinger, Thorsten Hofmann, Michael Budach
  • Patent number: 10983075
    Abstract: The present application relates to a scanning probe microscope comprising a probe arrangement for analyzing at least one defect of a photolithographic mask or of a wafer, wherein the scanning probe microscope comprises: (a) at least one first probe embodied to analyze the at least one defect; (b) means for producing at least one mark, by use of which the position of the at least one defect is indicated on the mask or on the wafer; and (c) wherein the mark is embodied in such a way that it may be detected by a scanning particle beam microscope.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: April 20, 2021
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Gabriel Baralia, Christof Baur, Klaus Edinger, Thorsten Hofmann, Michael Budach
  • Patent number: 10732501
    Abstract: The present application relates to a method for permanently repairing defects of absent material of a photolithographic mask, comprising the following steps: (a) providing at least one carbon-containing precursor gas and at least one oxidizing agent at a location to be repaired of the photolithographic mask; (b) initiating a reaction of the at least one carbon-containing precursor gas with the aid of at least one energy source at the location of absent material in order to deposit material at the location of absent material, wherein the deposited material comprises at least one reaction product of the reacted at least one carbon-containing precursor gas; and (c) controlling a gas volumetric flow rate of the at least one oxidizing agent in order to minimize a carbon proportion of the deposited material.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: August 4, 2020
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Jens Oster, Kinga Kornilov, Tristan Bret, Horst Schneider, Thorsten Hofmann
  • Publication number: 20190317395
    Abstract: The present application relates to a method for permanently repairing defects of absent material of a photolithographic mask, comprising the following steps: (a) providing at least one carbon-containing precursor gas and at least one oxidizing agent at a location to be repaired of the photolithographic mask; (b) initiating a reaction of the at least one carbon-containing precursor gas with the aid of at least one energy source at the location of absent material in order to deposit material at the location of absent material, wherein the deposited material comprises at least one reaction product of the reacted at least one carbon-containing precursor gas; and (c) controlling a gas volumetric flow rate of the at least one oxidizing agent in order to minimize a carbon proportion of the deposited material.
    Type: Application
    Filed: June 26, 2019
    Publication date: October 17, 2019
    Inventors: Jens Oster, Kinga Kornilov, Tristan Bret, Horst Schneider, Thorsten Hofmann
  • Patent number: 10372032
    Abstract: The present application relates to a method for permanently repairing defects of absent material of a photolithographic mask, comprising the following steps: (a) providing at least one carbon-containing precursor gas and at least one oxidizing agent at a location to be repaired of the photolithographic mask; (b) initiating a reaction of the at least one carbon-containing precursor gas with the aid of at least one energy source at the location of absent material in order to deposit material at the location of absent material, wherein the deposited material comprises at least one reaction product of the reacted at least one carbon-containing precursor gas; and (c) controlling a gas volumetric flow rate of the at least one oxidizing agent in order to minimize a carbon proportion of the deposited material.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: August 6, 2019
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Jens Oster, Kinga Kornilov, Tristan Bret, Horst Schneider, Thorsten Hofmann
  • Patent number: 10060947
    Abstract: The invention refers to a method for analyzing a defect of an optical element for the extreme ultra-violet wavelength range comprising at least one substrate and at least one multi-layer structure, the method comprising the steps: (a) determining first data by exposing the defect to ultra-violet radiation, (b) determining second data by scanning the defect with a scanning probe microscope, (c) determining third data by scanning the defect with a scanning particle microscope, and (d) com-bining the first, the second and the third data.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: August 28, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Budach, Tristan Bret, Klaus Edinger, Thorsten Hofmann
  • Publication number: 20180106831
    Abstract: The invention refers to a method for analyzing a defect of an optical element for the extreme ultra-violet wavelength range comprising at least one substrate and at least one multi-layer structure, the method comprising the steps: (a) determining first data by exposing the defect to ultra-violet radiation, (b) determining second data by scanning the defect with a scanning probe microscope, (c) determining third data by scanning the defect with a scanning particle microscope, and (d) combining the first, the second and the third data.
    Type: Application
    Filed: December 11, 2017
    Publication date: April 19, 2018
    Inventors: Michael Budach, Tristan Bret, Klaus Edinger, Thorsten Hofmann
  • Patent number: 9910065
    Abstract: The present invention relates to apparatuses and methods for examining a surface of a test object, such as e.g. a lithography mask. In accordance with one aspect of the invention, an apparatus for examining a surface of a mask comprises a probe which interacts with the surface of the mask, and a measuring apparatus for establishing a reference distance of the mask from a reference point, wherein the measuring apparatus measures the reference distance of the mask in a measurement region of the mask which is not arranged on the surface of the mask.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: March 6, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Budach, Thorsten Hofmann, Klaus Edinger, Pawel Szych, Gabriel Baralia
  • Publication number: 20170292923
    Abstract: The present application relates to a scanning probe microscope comprising a probe arrangement for analyzing at least one defect of a photolithographic mask or of a wafer, wherein the scanning probe microscope comprises: (a) at least one first probe embodied to analyze the at least one defect; (b) means for producing at least one mark, by use of which the position of the at least one defect is indicated on the mask or on the wafer; and (c) wherein the mark is embodied in such a way that it may be detected by a scanning particle beam microscope.
    Type: Application
    Filed: April 7, 2017
    Publication date: October 12, 2017
    Inventors: Gabriel Baralia, Christof Baur, Klaus Edinger, Thorsten Hofmann, Michael Budach
  • Publication number: 20170248842
    Abstract: The present application relates to a method for permanently repairing defects of absent material of a photolithographic mask, comprising the following steps: (a) providing at least one carbon-containing precursor gas and at least one oxidizing agent at a location to be repaired of the photolithographic mask; (b) initiating a reaction of the at least one carbon-containing precursor gas with the aid of at least one energy source at the location of absent material in order to deposit material at the location of absent material, wherein the deposited material comprises at least one reaction product of the reacted at least one carbon-containing precursor gas; and (c) controlling a gas volumetric flow rate of the at least one oxidizing agent in order to minimize a carbon proportion of the deposited material.
    Type: Application
    Filed: February 24, 2017
    Publication date: August 31, 2017
    Inventors: Jens Oster, Kinga Kornilov, Tristan Bret, Horst Schneider, Thorsten Hofmann
  • Patent number: 9721754
    Abstract: The invention relates to a method for processing a substrate with a focussed particle beam which incidents on the substrate, the method comprising the steps of: (a) generating at least one reference mark on the substrate using the focused particle beam and at least one processing gas, (b) determining a reference position of the at least one reference mark, (c) processing the substrate using the reference position of the reference mark, and (d) removing the at least one reference mark from the substrate.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: August 1, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Tristan Bret, Petra Spies, Thorsten Hofmann
  • Publication number: 20160341763
    Abstract: The present invention relates to apparatuses and methods for examining a surface of a test object, such as e.g. a lithography mask. In accordance with one aspect of the invention, an apparatus for examining a surface of a mask comprises a probe which interacts with the surface of the mask, and a measuring apparatus for establishing a reference distance of the mask from a reference point, wherein the measuring apparatus measures the reference distance of the mask in a measurement region of the mask which is not arranged on the surface of the mask.
    Type: Application
    Filed: May 19, 2016
    Publication date: November 24, 2016
    Inventors: Michael Budach, Thorsten Hofmann, Klaus Edinger, Pawel Szych, Gabriel Baralia
  • Patent number: 9115981
    Abstract: The present invention refers to an apparatus and a method for investigating an object with a scanning particle microscope and at least one scanning probe microscope with a probe, wherein the scanning particle microscope and the at least one scanning probe microscope are spaced with respect to each other in a common vacuum chamber so that a distance between the optical axis of the scanning particle microscope and the measuring point of the scanning probe microscope in the direction perpendicular to the optical axis of the scanning particle microscope is larger than the maximum field of view of both the scanning probe microscope and the scanning particle microscope, wherein the method comprises the step of determining the distance between the measuring point of the scanning probe microscope and the optical axis of the scanning particle microscope.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: August 25, 2015
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Christof Baur, Klaus Edinger, Thorsten Hofmann, Gabriel Baralia, Michael Budach
  • Patent number: 9023666
    Abstract: The invention relates to a method for electron beam induced etching of a material (100, 200) with the method steps providing at least one etching gas at a position of the material (100, 200) at which an electron beam impacts on the material (100, 200) and simultaneously providing at least one passivation gas which is adapted for slowing down or inhibiting a spontaneous etching by the at least one etching gas.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: May 5, 2015
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Nicole Auth, Petra Spies, Rainer Becker, Thorsten Hofmann, Klaus Edinger
  • Publication number: 20140255831
    Abstract: The invention refers to a method and apparatus for protecting a substrate during a processing by at least one particle beam. The method comprises the following steps: (a) applying a locally restrict limited protection layer on the substrate; (b) etching the substrate and/or a layer arranged on the substrate by use of the at least one particle beam and at least one gas; and/or (c) depositing material onto the substrate by use of the at least one particle beam and at least one precursor gas; and (d) removing the locally limited protection layer from the substrate.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Inventors: Thorsten Hofmann, Tristan Bret, Petra Spies, Nicole Auth, Michael Budach, Dajana Cujas
  • Patent number: 8769709
    Abstract: The invention refers to a probe assembly for a scanning probe microscope which comprises at least one first probe-adapted for analyzing a specimen, at least one second probe adapted for modifying the specimen and at least one motion element associated with the probe assembly and adapted for scanning one of the probes being in a working position across a surface of the specimen so that the at least one first probe interacts with the specimen whereas the at least one second probe is in a neutral position in which it does not interact with the specimen and to bring the at least one second probe into a position so that the at least one second probe can modify a region of the specimen analyzed with the at least one first probe.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: July 1, 2014
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Christof Baur, Klaus Edinger, Thorsten Hofmann, Gabriel Baralia
  • Publication number: 20140165236
    Abstract: The invention refers to a method for analyzing a defect of an optical element for the extreme ultra-violet wavelength range comprising at least one substrate and at least one multi-layer structure, the method comprising the steps: (a) determining first data by exposing the defect to ultra-violet radiation, (b) determining second data by scanning the defect with a scanning probe microscope, (c) determining third data by scanning the defect with a scanning particle microscope, and (d) com-bining the first, the second and the third data.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 12, 2014
    Inventors: Michael Budach, Tristan Bret, Klaus Edinger, Thorsten Hofmann