Patents by Inventor Thripthi Hegde

Thripthi Hegde has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11990932
    Abstract: A clock buffer or driver is gated pending reception of verifiable crypto keys. These clock buffer or divers remain gated, thus disabling a processor from any meaningful function, till crypto keys are decoded, verified, and applied to the clock buffer or driver. A low frequency pseudorandom frequency hopping time sequence is generated and used for randomizing spread-spectrum to modulate a reference clock (or output clock) of a frequency synthesizer. This hopping time sequence holds the key to unlocking the crypto keys. The PWM modulated crypto keys are carried by the hopping time sequence. To decode the PWM modulated crypto keys, the hopping time sequence is used. The reference clock which is modulated with crypto keys in the spread-spectrum is sent to a decoder (in a processor) along with the hopping time sequence. The crypto keys are decoded and then used to un-gate the clock buffer.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: May 21, 2024
    Assignee: INTEL CORPORATION
    Inventors: Mohamed A. Abdelmoneum, Nasser Kurd, Thripthi Hegde, Narayan Srinivasa, Peter Sagazio
  • Patent number: 11461504
    Abstract: An apparatus is provided for autonomous security and functional safety (FUSA) of clock and voltages. The apparatus may include: a multiplexer having a first input communicatively coupled to a pin to receive a first clock external to a die, and a second input coupled to an output of a divider; an oscillator to provide a second clock; and a counter coupled to an output of the multiplexer and the oscillator, wherein the counter is to operate with the second clock and is to determine a frequency of the first clock. The apparatus may further include a voltage monitor circuitry for monitoring voltage(s) for FUSA, a reference generator for FUSA, a duty cycle monitor for FUSA, a frequency degradation monitor for FUSA, and a phase error degradation monitor for FUSA.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: October 4, 2022
    Assignee: Intel Corporation
    Inventors: Nasser Kurd, Praveen Mosalikanti, Thripthi Hegde, Mark Neidengard, Vaughn Grossnickle, Qi S. Wang, Kandadai Ramesh
  • Patent number: 11442492
    Abstract: An apparatus and method to protect unauthorized change to a reference clock for a processor. The apparatus comprises: a first oscillator to generate a first clock; a second oscillator to generate a second clock; a third oscillator to generate a third clock; a first counter to count frequency of the first clock with respect to a fourth clock; a second counter to count frequency of the second clock with respect to the fourth clock; a third counter to count frequency of the third clock with respect to the fourth clock; and a circuitry to compare frequencies of the first, second, and third clocks with one another. The oscillators can be embedded in an interposer or package. These oscillators include one or more of: LC oscillator, micro electro-mechanical system (MEMs) based resonator, or ring oscillator.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: September 13, 2022
    Assignee: Intel Corporation
    Inventors: Mohamed A. Abdelmoneum, Nasser A. Kurd, Thripthi Hegde
  • Publication number: 20220207155
    Abstract: Detailed herein is instruction level support to allow untrusted software to save/restore key state from the memory encryption engine to support S3/S4 flows on clients. In a first embodiment, the save/restore is done by the untrusted software and encryption hardware alone. In another embodiment, a security engine (which forms the root of trust on the platform) is involved to protect the keys before handing over to untrusted software. Either embodiment uses the instructions introduced herein which may work differently underneath depending on the implementation option chosen.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Inventors: Siddhartha CHHABRA, Thripthi HEGDE, Reouven ELBAZ
  • Publication number: 20220200655
    Abstract: A clock buffer or driver is gated pending reception of verifiable crypto keys. These clock buffer or divers remain gated, thus disabling a processor from any meaningful function, till crypto keys are decoded, verified, and applied to the clock buffer or driver. A low frequency pseudorandom frequency hopping time sequence is generated and used for randomizing spread-spectrum to modulate a reference clock (or output clock) of a frequency synthesizer. This hopping time sequence holds the key to unlocking the crypto keys. The PWM modulated crypto keys are carried by the hopping time sequence. To decode the PWM modulated crypto keys, the hopping time sequence is used. The reference clock which is modulated with crypto keys in the spread-spectrum is sent to a decoder (in a processor) along with the hopping time sequence. The crypto keys are decoded and then used to un-gate the clock buffer.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Mohamed A. Abdelmoneum, Nasser Kurd, Thripthi Hegde, Narayan Srinivasa, Peter Sagazio
  • Publication number: 20210049307
    Abstract: An apparatus is provided for autonomous security and functional safety (FUSA) of clock and voltages. The apparatus may include: a multiplexer having a first input communicatively coupled to a pin to receive a first clock external to a die, and a second input coupled to an output of a divider; an oscillator to provide a second clock; and a counter coupled to an output of the multiplexer and the oscillator, wherein the counter is to operate with the second clock and is to determine a frequency of the first clock. The apparatus may further include a voltage monitor circuitry for monitoring voltage(s) for FUSA, a reference generator for FUSA, a duty cycle monitor for FUSA, a frequency degradation monitor for FUSA, and a phase error degradation monitor for FUSA.
    Type: Application
    Filed: November 2, 2020
    Publication date: February 18, 2021
    Applicant: Intel Corporation
    Inventors: Nasser Kurd, Praveen Mosalikanti, Thripthi Hegde, Mark Neidengard, Vaughn Grossnickle, Qi S. Wang, Kandadai Ramesh
  • Patent number: 10824764
    Abstract: An apparatus is provided for autonomous security and functional safety (FUSA) of clock and voltages. The apparatus may include: a multiplexer having a first input communicatively coupled to a pin to receive a first clock external to a die, and a second input coupled to an output of a divider; an oscillator to provide a second clock; and a counter coupled to an output of the multiplexer and the oscillator, wherein the counter is to operate with the second clock and is to determine a frequency of the first clock. The apparatus may further include a voltage monitor circuitry for monitoring voltage(s) for FUSA, a reference generator for FUSA, a duty cycle monitor for FUSA, a frequency degradation monitor for FUSA, and a phase error degradation monitor for FUSA.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: November 3, 2020
    Assignee: Intel Corporation
    Inventors: Nasser Kurd, Praveen Mosalikanti, Thripthi Hegde, Mark Neidengard, Vaughn Grossnickle, Qi S. Wang, Kandadai Ramesh
  • Publication number: 20200285267
    Abstract: An apparatus and method to protect unauthorized change to a reference clock for a processor. The apparatus comprises: a first oscillator to generate a first clock; a second oscillator to generate a second clock; a third oscillator to generate a third clock; a first counter to count frequency of the first clock with respect to a fourth clock; a second counter to count frequency of the second clock with respect to the fourth clock; a third counter to count frequency of the third clock with respect to the fourth clock; and a circuitry to compare frequencies of the first, second, and third clocks with one another. The oscillators can be embedded in an interposer or package. These oscillators include one or more of: LC oscillator, micro electro-mechanical system (MEMs) based resonator, or ring oscillator.
    Type: Application
    Filed: March 4, 2019
    Publication date: September 10, 2020
    Inventors: Mohamed A. Abdelmoneum, Nasser A. Kurd, Thripthi Hegde
  • Publication number: 20200004990
    Abstract: An apparatus is provided for autonomous security and functional safety (FUSA) of clock and voltages. The apparatus may include: a multiplexer having a first input communicatively coupled to a pin to receive a first clock external to a die, and a second input coupled to an output of a divider; an oscillator to provide a second clock; and a counter coupled to an output of the multiplexer and the oscillator, wherein the counter is to operate with the second clock and is to determine a frequency of the first clock. The apparatus may further include a voltage monitor circuitry for monitoring voltage(s) for FUSA, a reference generator for FUSA, a duty cycle monitor for FUSA, a frequency degradation monitor for FUSA, and a phase error degradation monitor for FUSA.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 2, 2020
    Applicant: Intel Corporation
    Inventors: Nasser Kurd, Praveen Mosalikanti, Thripthi Hegde, Mark Neidengard, Vaughn Grossnickle, Qi S. Wang, Kandadai Ramesh