Patents by Inventor Thu-Hoa Tran-Thi

Thu-Hoa Tran-Thi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160202220
    Abstract: A liquid reagent composition for detecting phenol or phenol derivatives includes a reagent capable of generating a stained product by forming a bond with phenol, an oxidant compound or mixture of oxidant compounds, a basic compound or mixture of basic compounds. The ratio of [stained reagent]:[oxidant compound] is 1:2 to 50:1, having a pH greater than 7. Also disclosed is a kit for the use of the composition and liquid-phase method for analysing a fluid potentially containing phenol or a phenol derivatives.
    Type: Application
    Filed: January 13, 2016
    Publication date: July 14, 2016
    Inventors: Thu-Hoa TRAN-THI, Laurent MUGHERLI, Ana BORTA
  • Patent number: 9018016
    Abstract: What is provided includes a porous sol-gel material whose intrinsic pH is lower than 1 and comprising at least one probe molecule chosen from the group consisting of croconic acid, p-dimethyl-aminobenzaldehyde (DMABA), p-dimethyl aminocinnamaldehyde (DMACA), p-methoxybenzaldehyde (MOB) and 4-methoxy-1-naphtaldehyde (MON). In addition, a detection system containing the porous sol-gel material and a method of preparation and use of the porous sol-gel material for trapping and/or detecting and optionally quantifying at least one chemical compound such as indole and indole compounds are provided.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: April 28, 2015
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Sabine Crunaire, Thu-Hoa Tran-Thi
  • Publication number: 20140242713
    Abstract: Porous sol-gel material essentially consisting of units of one or more first polyalkoxysilanes chosen from the following compounds: (chloromethyl)triethoxysilane; 1,3-dimethyltetramethoxydisiloxane; ethyltrimethoxysilane; triethoxy(ethyl)silane; triethoxymethylsilane; triethoxy(vinyl)silane; trimethoxymethylsilane; trimethoxy(vinyl)silane; tetraethoxysilane or tetramethoxysilane (TMOS) and of units of one or more second polyalkoxysilanes chosen from the following compounds: (N-(3-(trimethoxysilyl)propyl)ethylenediamine; 3-aminopropyltriethoxysilane (APTES) and 3-aminopropyltrimethoxysilane, in a first polyalkoxysilane/second polyalkoxysilane molar ratio of 1/0.01 to 1/1, optionally comprising a probe molecule, method of preparation and applications in the trapping of monocyclic aromatic hydrocarbons and other pollutants or in their detection.
    Type: Application
    Filed: May 6, 2014
    Publication date: August 28, 2014
    Applicants: CEA - COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CNRS - CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQU E
    Inventors: Sabine Crunaire, Thu-Hoa Tran-Thi
  • Patent number: 8759111
    Abstract: Porous sol-gel material essentially consisting of units of one or more first polyalkoxysilanes chosen from the following compounds: (chloromethyl)triethoxysilane; 1,3-dimethyltetramethoxydisiloxane; ethyl trimethoxysilane; triethoxy(ethyl)silane; triethoxymethylsilane; triethoxy(vinyl)silane; trimethoxymethylsilane; trimethoxy(vinyl)silane; tetraethoxysilane or tetramethoxysilane (TMOS) and of units of one or more second polyalkoxysilanes chosen from the following compounds: (N-(3-(trimethoxysilyl)propyl)ethylenediamine; 3-aminopropyltriethoxysilane (APTES) and 3-aminopropyltrimethoxysilane, in a first polyalkoxysilane/second polyalkoxysilane molar ratio of 1/0.01 to 1/1, optionally comprising a probe molecule, method of preparation and applications in the trapping of monocyclic aromatic hydrocarbons and other pollutants or in their detection.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: June 24, 2014
    Assignees: CEA—Commisariat a l'Energie Atomique et aux Energies Alternatives, CNRS—Centre National de la Recherche Scientifique
    Inventors: Sabine Crunaire, Thu-Hoa Tran-Thi
  • Publication number: 20140162301
    Abstract: The present invention relates to a method for determining the presence or absence of a microorganism, said method including the steps of: 1) providing an enclosure containing a liquid or semi-solid phase consisting of a biological medium capable of containing a living form of said microorganism, nutritional elements, and an enzymatic substrate which is specific to said microorganism and which can be metabolised into at least one VOC metabolite, and a gaseous phase adjacent to said liquid or semi-solid phase; 2) exposing at least said liquid or semi-solid phase to conditions that are propitious for said microorganism to metabolise said enzymatic substrate into a molecule of said VOC metabolite; and 3) determining, by optical transduction, the presence or absence of said VOC metabolite, characterised in that the latter interacts with a nanoporous matrix, said matrix being implemented in a form that is separate from said enzymatic substrate, and in that the detection, by optical transduction, of a change in the
    Type: Application
    Filed: June 27, 2012
    Publication date: June 12, 2014
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Pierre Marcoux, Mathieu Dupoy, Laure-Hélène Guillemot, Thu-Hoa Tran-Thi
  • Patent number: 8647885
    Abstract: Process for detecting a gaseous compound of BX3, HX or X2 type within a gas using a composition containing a probe molecule, characterized in that the probe molecule is a molecule for which the reaction with one or more compounds of BX3, HX or X2 type leads to a variation of at least one of its physicochemical properties, this variation being measurable via a suitable analysis technique, and in that the following steps are carried out in this order: (a) measurement of said physicochemical property of the probe molecule, such as a spectral property, (b) bringing the gas into contact with the composition containing the probe molecule from step (a), (c) repeat measurement of said physicochemical property, (d) correlation of the variation of said spectral property between steps (a) and (c) in the presence of said gaseous compound of BX3, HX or X2 type, the measurement of the physicochemical property from step (a) possibly being a prior step, process for trapping gaseous compounds of BX3, HX or X2 type contained i
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: February 11, 2014
    Assignees: Commissariat a l'Energie Atomique, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Thu-Hoa Tran-Thi, Philippe Banet, Loic Legagneux
  • Publication number: 20130280817
    Abstract: The invention relates to a multifunctional detector for gaseous compounds, or mixtures of gaseous compounds, selected from NH2Cl, NHCl2, NCl3, total chlorine, NOx, where x=1 or 2, O3, and X2, where X?Cl, Br, or I, in a sample, said detector including a first sensor including an iodide and a reactive compound selected from starch, amylose, amylopectin, xyloglucan, xylan, chitosan, glycogen, polyvinyl alcohol, cellulose or a cellulose compound, ?-cyclodextrin, theobromine, and polypropylene block polymers and polyethylene oxide block polymers, included in a block of sol-gel material that is absorbent in the UV spectrum but not in the visible spectrum. The invention also relates to the uses of said detector.
    Type: Application
    Filed: December 14, 2011
    Publication date: October 24, 2013
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE - CNRS -, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Thu-Hoa Tran-Thi, Julien Garcia, Thi Dinh Nguyen, Trung-Hieu Nguyen
  • Publication number: 20120295363
    Abstract: What is provided includes a porous sol-gel material whose intrinsic pH is lower than 1 and comprising at least one probe molecule chosen from the group consisting of croconic acid, p-dimethyl-aminobenzaldehyde (DMABA), p-dimethyl aminocinnamaldehyde (DMACA), p-methoxybenzaldehyde (MOB) and 4-methoxy-1-naphtaldehyde (MON). In addition, a detection system containing the porous sol-gel material and a method of preparation and use of the porous sol-gel material for trapping and/or detecting and optionally quantifying at least one chemical compound such as indole and indole compounds are provided.
    Type: Application
    Filed: November 10, 2010
    Publication date: November 22, 2012
    Applicants: Centre National de la Recherche Scientifique, COMMISSARIAT a I'energie atomique et aux energies alternatives
    Inventors: Sabine Crunaire, Thu-Hoa Tran-Thi
  • Patent number: 8173440
    Abstract: The invention concerns a method for detecting and/or assaying and/or capturing at least one aldehyde, preferably formaldehyde, including a step of contacting a gas stream with a material comprising a nonporous metal oxide sol-gel matrix, said matrix containing at least one probe molecule bearing at least one reactive function capable of reacting with at least one aldehyde function. The invention also concerns the material for implementing said method, a method for preparing same, and sensors incorporating such materials.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: May 8, 2012
    Assignees: Commisariat a l'Energie Atomique, Centre National de la Recherche Scientifique-CNRS
    Inventors: Hélène Paolacci, Thu-Hoa Tran-Thi
  • Publication number: 20110151573
    Abstract: Porous sol-gel material essentially consisting of units of one or more first polyalkoxysilanes chosen from the following compounds: (chloromethyl)triethoxysilane; 1,3-dimethyltetramethoxydisiloxane; ethyl trimethoxysilane; triethoxy(ethyl)silane; triethoxymethylsilane; triethoxy(vinyl)silane; trimethoxymethylsilane; trimethoxy(vinyl)silane; tetraethoxysilane or tetramethoxysilane (TMOS) and of units of one or more second polyalkoxysilanes chosen from the following compounds: (N-(3-(trimethoxysilyl)propyl)ethylenediamine; 3-aminopropyltriethoxysilane (APTES) and 3-aminopropyltrimethoxysilane, in a first polyalkoxysilane/second polyalkoxysilane molar ratio of 1/0.01 to 1/1, optionally comprising a probe molecule, method of preparation and applications in the trapping of monocyclic aromatic hydrocarbons and other pollutants or in their detection.
    Type: Application
    Filed: July 10, 2009
    Publication date: June 23, 2011
    Inventors: Sabine Crunaire, Thu-Hoa Tran-Thi
  • Patent number: 7892851
    Abstract: The present invention relates to compounds which can go to make up mesostructured porous hybrid organic-inorganic materials (MPHOIMs) and can serve, within these materials, as probe molecules for the detection or quantitative determination of halogenated gaseous compounds. It also relates to MPHOIMs in which these compounds are grafted by covalent or iono-covalent bonding, to a process for manufacturing these MPHOIMs, and also to chemical sensors for the detection or quantitative determination of halogenated gaseous compounds and comprising these MPHOIMs as sensitive materials. The invention applies, in particular, to the detection and quantitative determination of halogenated gaseous compounds used in the microelectronics field and, more especially, halogenated boron complexes.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: February 22, 2011
    Assignees: Commissariat a l'Energie Atomique, Centre National de la Recherche, Universite Pierre et Marie Curie (Paris VI)
    Inventors: Thu-Hoa Tran-Thi, Clement Sanchez, Lionel Nicole, Peter Hesemann
  • Publication number: 20100136704
    Abstract: Process for detecting a gaseous compound of BX3, HX or X2 type within a gas using a composition containing a probe molecule, characterized in that the probe molecule is a molecule for which the reaction with one or more compounds of BX3, HX or X2 type leads to a variation of at least one of its physicochemical properties, this variation being measurable via a suitable analysis technique, and in that the following steps are carried out in this order: (a) measurement of said physicochemical property of the probe molecule, such as a spectral property, (b) bringing the gas into contact with the composition containing the probe molecule from step (a), (c) repeat measurement of said physicochemical property, (d) correlation of the variation of said spectral property between steps (a) and (c) in the presence of said gaseous compound of BX3, HX or X2 type, the measurement of the physicochemical property from step (a) possibly being a prior step, process for trapping gaseous compounds of BX3, HX or X2 type contained i
    Type: Application
    Filed: May 2, 2008
    Publication date: June 3, 2010
    Inventors: Thu-Hoa Tran-Thi, Philippe Banet, Loic Legagneux
  • Publication number: 20080220534
    Abstract: The invention concerns a method for detecting and/or assaying and/or capturing at least one aldehyde, preferably formaldehyde, including a step of contacting a gas stream with a material comprising a nonporous metal oxide sol-gel matrix, said matrix containing at least one probe molecule bearing at least one reactive function capable of reacting with at least one aldehyde function. The invention also concerns the material for implementing said method, a method for preparing same, and sensors incorporating such materials.
    Type: Application
    Filed: September 15, 2006
    Publication date: September 11, 2008
    Applicants: Commissariat a l'Energie Atomique, Centre National de la Recherche Scientifique - CNRS
    Inventors: Helene Paolacci, Thu-Hoa Tran-Thi
  • Publication number: 20070214867
    Abstract: The present invention relates to compounds which can go to make up mesostructured porous hybrid organic-inorganic materials (MPHOIMs) and can serve, within these materials, as probe molecules for the detection or quantitative determination of halogenated gaseous compounds. It also relates to MPHOIMs in which these compounds are grafted by covalent or iono-covalent bonding, to a process for manufacturing these MPHOIMs, and also to chemical sensors for the detection or quantitative determination of halogenated gaseous compounds and comprising these MPHOIMs as sensitive materials. The invention applies, in particular, to the detection and quantitative determination of halogenated gaseous compounds used in the microelectronics field and, more especially, halogenated boron complexes.
    Type: Application
    Filed: April 15, 2005
    Publication date: September 20, 2007
    Applicants: COMMISSARIAT A L'ENERGIE ATOKMIQUE, CENTRE NATIONAL DE LA RECHERCHE, UNIVERSITE PIERRE ET MARIE CURIE (PARIS VI)
    Inventors: Thu-Hoa Tran-Thi, Clement Sanchez, Lionel Nicole, Peter Hesemann
  • Publication number: 20060051826
    Abstract: The invention relates to a process and to a device for the incorporation of a compound in the pores of a porous material chosen from microporous and mesoporous materials obtained by the sol-gel process and to the uses of this process and of this device. The process comprises the evaporation or the sublimation of the compound in a chamber comprising the porous material. Uses: doping of microporous and mesoporous materials obtained by the sol-gel process and in particular of micelle-templated silica materials, in the manufacture of chemical sensors and multisensors, of molecular sieves, of selective membranes for filtration, of stationary phases for chromatography, or of optical or optoelectronic materials.
    Type: Application
    Filed: June 11, 2003
    Publication date: March 9, 2006
    Inventors: Thu-Hoa Tran-Thi, Thanh-Toan Truong