Patents by Inventor Thuy L. Tran-Quinn

Thuy L. Tran-Quinn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9805977
    Abstract: One aspect of the disclosure relates to an integrated circuit structure. The integrated circuit structure may include a front side and back side opposing the front side, the integrated circuit structure comprising: a through-silicon-via (TSV) at least partially within a dielectric layer extending away from the front side; a first metal adjacent to the TSV and within the dielectric layer, the first metal being substantially surrounded by a first seed layer; a conductive pad over the first metal and the TSV and extending away from the front side, wherein the conductive pad provides electrical connection between the TSV and the first metal and includes a second seed layer substantially surrounding a second metal, wherein the second seed layer separates the second metal from the first metal and the TSV.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: October 31, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Vijay Sukumaran, Thuy L. Tran-Quinn, Jorge A. Lubguban, John J. Garant
  • Patent number: 9252133
    Abstract: The formation of TSVs (through substrate vias) for 3D applications has proven to be defect dependent upon the type of starting semiconductor substrate employed. In addition to the initial formation of TSVs via Bosch processing, backside 3D wafer processing has also shown a defect dependency on substrate type. High yield of TSV formation can be achieved by utilizing a substrate that embodies bulk micro defects (BMD) at a density between 1e4/cc (particles per cubic centimeter) and 1e7/cc and having equivalent diameter less than 55 nm (nanometers).
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: February 2, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Christopher N. Collins, Mukta G. Farooq, Troy L. Graves-Abe, Joyce C. Liu, Gerd Pfeiffer, Thuy L. Tran-Quinn
  • Publication number: 20150004749
    Abstract: The formation of TSVs (through substrate vias) for 3D applications has proven to be defect dependent upon the type of starting semiconductor substrate employed. In addition to the initial formation of TSVs via Bosch processing, backside 3D wafer processing has also shown a defect dependency on substrate type. High yield of TSV formation can be achieved by utilizing a substrate that embodies bulk micro defects (BMD) at a density between 1e4/cc (particles per cubic centimeter) and 1e7/cc and having equivalent diameter less than 55 nm (nanometers).
    Type: Application
    Filed: September 16, 2014
    Publication date: January 1, 2015
    Inventors: Christopher N. Collins, Mukta G. Farooq, Troy L. Graves-Abe, Joyce C. Liu, Gerd Pfeiffer, Thuy L. Tran-Quinn
  • Patent number: 8907494
    Abstract: The formation of TSVs (through substrate vias) for 3D applications has proven to be defect dependent upon the type of starting semiconductor substrate employed. In addition to the initial formation of TSVs via Bosch processing, backside 3D wafer processing has also shown a defect dependency on substrate type. High yield of TSV formation can be achieved by utilizing a substrate that embodies bulk micro defects (BMD) at a density between 1e4/cc (particles per cubic centimeter) and 1e7/cc and having equivalent diameter less than 55 nm (nanometers).
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: December 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Christopher N. Collins, Mukta G. Farooq, Troy L. Graves-Abe, Joyce C. Liu, Gerd Pfeiffer, Thuy L. Tran-Quinn
  • Publication number: 20140264756
    Abstract: The formation of TSVs (through substrate vias) for 3D applications has proven to be defect dependent upon the type of starting semiconductor substrate employed. In addition to the initial formation of TSVs via Bosch processing, backside 3D wafer processing has also shown a defect dependency on substrate type. High yield of TSV formation can be achieved by utilizing a substrate that embodies bulk micro defects (BMD) at a density between 1e4/cc (particles per cubic centimeter) and 1e7/cc and having equivalent diameter less than 55 nm (nanometers).
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: International Business Machines Corporation
    Inventors: Christopher N. Collins, Mukta G. Farooq, Troy L. Graves-Abe, Joyce C. Liu, Gerd Pfeiffer, Thuy L. Tran-Quinn