Patents by Inventor Ti-Bin Chen
Ti-Bin Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240274715Abstract: A semiconductor device includes a gate structure on a substrate and an epitaxial layer adjacent to the gate structure, in which the epitaxial layer includes a first buffer layer, an anisotropic layer on the first buffer layer, a second buffer layer on the first buffer layer, and a bulk layer on the anisotropic layer. Preferably, a concentration of boron in the bulk layer is less than a concentration of boron in the anisotropic layer, a concentration of boron in the first buffer layer is less than a concentration of boron in the second buffer layer, and the concentration of boron in the second buffer layer is less than the concentration of boron in the anisotropic layer.Type: ApplicationFiled: March 21, 2023Publication date: August 15, 2024Applicant: UNITED MICROELECTRONICS CORP.Inventors: Kai-Hsiang Wang, Yi-Fan Li, Chung-Ting Huang, Chi-Hsuan Tang, Chun-Jen Chen, Ti-Bin Chen, Chih-Chiang Wu
-
Patent number: 12040234Abstract: A method for fabricating a semiconductor device includes the steps of forming a metal gate on a substrate, a spacer around the metal gate, and a first interlayer dielectric (ILD) layer around the spacer, performing a plasma treatment process to transform the spacer into a first bottom portion and a first top portion, performing a cleaning process to remove the first top portion, and forming a second ILD layer on the metal gate and the first ILD layer.Type: GrantFiled: August 3, 2021Date of Patent: July 16, 2024Assignee: UNITED MICROELECTRONICS CORP.Inventors: Yi-Fan Li, Po-Ching Su, Yu-Fu Wang, Min-Hua Tsai, Ti-Bin Chen, Chih-Chiang Wu, Tzu-Chin Wu
-
Patent number: 11916126Abstract: A semiconductor device includes a substrate and a gate structure. The gate structure is disposed on the substrate, and the gate structure includes a titanium nitride barrier layer a titanium aluminide layer, and a middle layer. The titanium aluminide layer is disposed on the titanium nitride barrier layer, and the middle layer is disposed between the titanium aluminide layer and the titanium nitride barrier layer. The middle layer is directly connected with the titanium aluminide layer and the titanium nitride barrier layer, and the middle layer includes titanium and nitrogen. A concentration of nitrogen in the middle layer is gradually decreased in a vertical direction towards an interface between the middle layer and the titanium aluminide layer.Type: GrantFiled: November 18, 2022Date of Patent: February 27, 2024Assignee: UNITED MICROELECTRONICS CORP.Inventors: Hui-Hsin Hsu, Huan-Chi Ma, Chien-Wen Yu, Shih-Min Chou, Nien-Ting Ho, Ti-Bin Chen
-
Publication number: 20230369442Abstract: A method for fabricating semiconductor device includes the steps of first providing a substrate having a first region and a second region, forming a first bottom barrier metal (BBM) layer on the first region and the second region, forming a first work function metal (WFM) layer on the first BBM layer on the first region and the second region, and then forming a diffusion barrier layer on the first WFM layer.Type: ApplicationFiled: July 26, 2023Publication date: November 16, 2023Applicant: UNITED MICROELECTRONICS CORP.Inventors: Yi-Fan Li, Wen-Yen Huang, Shih-Min Chou, Zhen Wu, Nien-Ting Ho, Chih- Chiang Wu, Ti-Bin Chen
-
Publication number: 20230369441Abstract: A method for fabricating semiconductor device includes the steps of first providing a substrate having a first region and a second region, forming a first bottom barrier metal (BBM) layer on the first region and the second region, forming a first work function metal (WFM) layer on the first BBM layer on the first region and the second region, and then forming a diffusion barrier layer on the first WFM layer.Type: ApplicationFiled: July 26, 2023Publication date: November 16, 2023Applicant: UNITED MICROELECTRONICS CORP.Inventors: Yi-Fan Li, Wen-Yen Huang, Shih-Min Chou, Zhen Wu, Nien-Ting Ho, Chih-Chiang Wu, Ti-Bin Chen
-
Patent number: 11757016Abstract: A method for fabricating semiconductor device includes the steps of first providing a substrate having a first region and a second region, forming a first bottom barrier metal (BBM) layer on the first region and the second region, forming a first work function metal (WFM) layer on the first BBM layer on the first region and the second region, and then forming a diffusion barrier layer on the first WFM layer.Type: GrantFiled: March 30, 2022Date of Patent: September 12, 2023Assignee: UNITED MICROELECTRONICS CORP.Inventors: Yi-Fan Li, Wen-Yen Huang, Shih-Min Chou, Zhen Wu, Nien-Ting Ho, Chih-Chiang Wu, Ti-Bin Chen
-
Patent number: 11705492Abstract: A first gate and a second gate are formed on a substrate with a gap between the first and second gates. The first gate has a first sidewall. The second gate has a second sidewall directly facing the first sidewall. A first sidewall spacer is disposed on the first sidewall. A second sidewall spacer is disposed on the second sidewall. A contact etch stop layer is deposited on the first and second gates and on the first and second sidewall spacers. The contact etch stop layer is subjected to a tilt-angle plasma etching process to trim a corner portion of the contact etch stop layer. An inter-layer dielectric layer is then deposited on the contact etch stop layer and into the gap.Type: GrantFiled: May 3, 2021Date of Patent: July 18, 2023Assignee: UNITED MICROELECTRONICS CORP.Inventors: Yi-Fan Li, Kuo-Chin Hung, Wen-Yi Teng, Ti-Bin Chen
-
Patent number: 11664425Abstract: A method for fabricating p-type field effect transistor (FET) includes the steps of first providing a substrate, forming a pad layer on the substrate, forming a well in the substrate, performing an ion implantation process to implant germanium ions into the substrate to form a channel region, and then conducting an anneal process to divide the channel region into a top portion and a bottom portion. After removing the pad layer, a gate structure is formed on the substrate and a lightly doped drain (LDD) is formed adjacent to two sides of the gate structure.Type: GrantFiled: January 20, 2022Date of Patent: May 30, 2023Assignee: UNITED MICROELECTRONICS CORP.Inventors: Shi-You Liu, Tsai-Yu Wen, Ching-I Li, Ya-Yin Hsiao, Chih-Chiang Wu, Yu-Chun Liu, Ti-Bin Chen, Shao-Ping Chen, Huan-Chi Ma, Chien-Wen Yu
-
Publication number: 20230078993Abstract: A semiconductor device includes a substrate and a gate structure. The gate structure is disposed on the substrate, and the gate structure includes a titanium nitride barrier layer a titanium aluminide layer, and a middle layer. The titanium aluminide layer is disposed on the titanium nitride barrier layer, and the middle layer is disposed between the titanium aluminide layer and the titanium nitride barrier layer. The middle layer is directly connected with the titanium aluminide layer and the titanium nitride barrier layer, and the middle layer includes titanium and nitrogen. A concentration of nitrogen in the middle layer is gradually decreased in a vertical direction towards an interface between the middle layer and the titanium aluminide layer.Type: ApplicationFiled: November 18, 2022Publication date: March 16, 2023Applicant: UNITED MICROELECTRONICS CORP.Inventors: Hui-Hsin Hsu, Huan-Chi Ma, Chien-Wen Yu, Shih-Min Chou, Nien-Ting Ho, Ti-Bin Chen
-
Publication number: 20230005795Abstract: A method for fabricating a semiconductor device includes the steps of forming a metal gate on a substrate, a spacer around the metal gate, and a first interlayer dielectric (ILD) layer around the spacer, performing a plasma treatment process to transform the spacer into a first bottom portion and a first top portion, performing a cleaning process to remove the first top portion, and forming a second ILD layer on the metal gate and the first ILD layer.Type: ApplicationFiled: August 3, 2021Publication date: January 5, 2023Applicant: UNITED MICROELECTRONICS CORP.Inventors: Yi-Fan Li, Po-Ching Su, Yu-Fu Wang, Min-Hua Tsai, Ti-Bin Chen, Chih-Chiang Wu, Tzu-Chin Wu
-
Patent number: 11538917Abstract: A semiconductor device includes a substrate and a gate structure. The gate structure is disposed on the substrate, and the gate structure includes a titanium nitride barrier layer and a titanium aluminide layer. The titanium aluminide layer is disposed on the titanium nitride barrier layer, and a thickness of the titanium aluminide layer ranges from twice a thickness of the titanium nitride barrier layer to three times the thickness of the titanium nitride barrier layer.Type: GrantFiled: June 22, 2021Date of Patent: December 27, 2022Assignee: UNITED MICROELECTRONICS CORP.Inventors: Hui-Hsin Hsu, Huan-Chi Ma, Chien-Wen Yu, Shih-Min Chou, Nien-Ting Ho, Ti-Bin Chen
-
Publication number: 20220384603Abstract: A semiconductor device includes a substrate and a gate structure. The gate structure is disposed on the substrate, and the gate structure includes a titanium nitride barrier layer and a titanium aluminide layer. The titanium aluminide layer is disposed on the titanium nitride barrier layer, and a thickness of the titanium aluminide layer ranges from twice a thickness of the titanium nitride barrier layer to three times the thickness of the titanium nitride barrier layer.Type: ApplicationFiled: June 22, 2021Publication date: December 1, 2022Applicant: UNITED MICROELECTRONICS CORP.Inventors: Hui-Hsin Hsu, Huan-Chi Ma, Chien-Wen Yu, Shih-Min Chou, Nien-Ting Ho, Ti-Bin Chen
-
Publication number: 20220223710Abstract: A method for fabricating semiconductor device includes the steps of first providing a substrate having a first region and a second region, forming a first bottom barrier metal (BBM) layer on the first region and the second region, forming a first work function metal (WFM) layer on the first BBM layer on the first region and the second region, and then forming a diffusion barrier layer on the first WFM layer.Type: ApplicationFiled: March 30, 2022Publication date: July 14, 2022Applicant: UNITED MICROELECTRONICS CORP.Inventors: Yi-Fan Li, Wen-Yen Huang, Shih-Min Chou, Zhen Wu, Nien-Ting Ho, Chih-Chiang Wu, Ti-Bin Chen
-
Publication number: 20220140080Abstract: A method for fabricating p-type field effect transistor (FET) includes the steps of first providing a substrate, forming a pad layer on the substrate, forming a well in the substrate, performing an ion implantation process to implant germanium ions into the substrate to form a channel region, and then conducting an anneal process to divide the channel region into a top portion and a bottom portion. After removing the pad layer, a gate structure is formed on the substrate and a lightly doped drain (LDD) is formed adjacent to two sides of the gate structure.Type: ApplicationFiled: January 20, 2022Publication date: May 5, 2022Applicant: UNITED MICROELECTRONICS CORP.Inventors: Shi-You Liu, Tsai-Yu Wen, Ching-I Li, Ya-Yin Hsiao, Chih-Chiang Wu, Yu-Chun Liu, Ti-Bin Chen, Shao-Ping Chen, Huan-Chi Ma, Chien-Wen Yu
-
Patent number: 11322598Abstract: A semiconductor device includes a substrate having a first region and a second region and a gate structure on the first region and the second region of the substrate. The gate structure includes a first bottom barrier metal (BBM) layer on the first region and the second region, a first work function metal (WFM) layer on the first region; and a diffusion barrier layer on a top surface and a sidewall of the first WFM layer on the first region and the first BBM layer on the second region. Preferably, a thickness of the first BBM layer on the second region is less than a thickness of the first BBM layer on the first region.Type: GrantFiled: June 21, 2020Date of Patent: May 3, 2022Assignee: UNITED MICROELECTRONICS CORP.Inventors: YI-Fan Li, Wen-Yen Huang, Shih-Min Chou, Zhen Wu, Nien-Ting Ho, Chih-Chiang Wu, Ti-Bin Chen
-
Patent number: 11271078Abstract: A p-type field effect transistor (pFET) includes a gate structure on a substrate, a channel region in the substrate directly under the gate structure, and a source/drain region adjacent to two sides of the gate structure. Preferably, the channel region includes a top portion and a bottom portion, in which a concentration of germanium in the bottom portion is lower than a concentration of germanium in the top portion and a depth of the top portion is equal to a depth of the bottom portion.Type: GrantFiled: April 1, 2020Date of Patent: March 8, 2022Assignee: UNITED MICROELECTRONICS CORP.Inventors: Shi-You Liu, Tsai-Yu Wen, Ching-I Li, Ya-Yin Hsiao, Chih-Chiang Wu, Yu-Chun Liu, Ti-Bin Chen, Shao-Ping Chen, Huan-Chi Ma, Chien-Wen Yu
-
Publication number: 20210257471Abstract: A first gate and a second gate are formed on a substrate with a gap between the first and second gates. The first gate has a first sidewall. The second gate has a second sidewall directly facing the first sidewall. A first sidewall spacer is disposed on the first sidewall. A second sidewall spacer is disposed on the second sidewall. A contact etch stop layer is deposited on the first and second gates and on the first and second sidewall spacers. The contact etch stop layer is subjected to a tilt-angle plasma etching process to trim a corner portion of the contact etch stop layer. An inter-layer dielectric layer is then deposited on the contact etch stop layer and into the gap.Type: ApplicationFiled: May 3, 2021Publication date: August 19, 2021Inventors: Yi-Fan Li, Kuo-Chin Hung, Wen-Yi Teng, Ti-Bin Chen
-
Patent number: 11031477Abstract: A first dummy gate and a second dummy gate are formed on a substrate with a gap between the first and second dummy gates. The first dummy gate has a first sidewall. The second dummy gate has a second sidewall directly facing the first sidewall. A first sidewall spacer is disposed on the first sidewall. A second sidewall spacer is disposed on the second sidewall. A contact etch stop layer is deposited on the first and second dummy gates and on the first and second sidewall spacers. The contact etch stop layer is subjected to a tilt-angle plasma etching process to trim a corner portion of the contact etch stop layer. An inter-layer dielectric layer is then deposited on the contact etch stop layer and into the gap.Type: GrantFiled: December 2, 2019Date of Patent: June 8, 2021Assignee: UNITED MICROELECTRONICS CORP.Inventors: Yi-Fan Li, Kuo-Chin Hung, Wen-Yi Teng, Ti-Bin Chen
-
Publication number: 20200321442Abstract: A semiconductor device includes a substrate having a first region and a second region and a gate structure on the first region and the second region of the substrate. The gate structure includes a first bottom barrier metal (BBM) layer on the first region and the second region, a first work function metal (WFM) layer on the first region; and a diffusion barrier layer on a top surface and a sidewall of the first WFM layer on the first region and the first BBM layer on the second region. Preferably, a thickness of the first BBM layer on the second region is less than a thickness of the first BBM layer on the first region.Type: ApplicationFiled: June 21, 2020Publication date: October 8, 2020Inventors: Yi-Fan Li, Wen-Yen Huang, Shih-Min Chou, Zhen Wu, Nien-Ting Ho, Chih-Chiang Wu, Ti-Bin Chen
-
Patent number: 10734496Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a first region and a second region; forming a first bottom barrier metal (BBM) layer on the first region and the second region; forming a first work function metal layer on the first BBM layer on the first region and the second region; removing the first work function metal (WFM) layer and part of the first BBM layer on the second region; and forming a diffusion barrier layer on the first WFM layer on the first region and the first BBM layer on the second region.Type: GrantFiled: October 31, 2018Date of Patent: August 4, 2020Assignee: UNITED MICROELECTRONICS CORP.Inventors: Yi-Fan Li, Wen-Yen Huang, Shih-Min Chou, Zhen Wu, Nien-Ting Ho, Chih-Chiang Wu, Ti-Bin Chen