Patents by Inventor Tian-Jian Chu

Tian-Jian Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9853214
    Abstract: A resistive random access memory includes a first electrode, a separating medium, a resistance changing layer and a second electrode. The first electrode has a mounting face. The separating medium has a first face in contact with the mounting face, a second face opposite to the first face, and an inner face extending between the first and second faces. The separating medium forms a through hole extending from the first to second face. A part of the mounting face is not covered by the separating medium. The separating medium has a first dielectric. The resistance changing layer extends along the part of the mounting face as well as the inner and second faces. The resistance changing layer has a second dielectric having a dielectric constant larger than a dielectric constant of the first dielectric by 2 or less. The second electrode is arranged on the resistance changing layer.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: December 26, 2017
    Assignee: National Sun Yat-Sen University
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Publication number: 20170222143
    Abstract: A resistive random access memory is provided to solve the problem of low switching speed of the conventional resistive random access memory. The resistive random access memory may include a thermally conductive layer, a first electrode layer, a heat preserving element, a resistance changing layer and a second electrode layer. The first electrode layer is arranged on the thermally conductive layer. The heat preserving element is arranged on the first electrode layer and forms a through-hole. A part of a surface of the first electrode layer is exposed to the through-hole. The resistance changing layer extends from the part of the surface of the first electrode layer to a surface of the heat preserving element that is located outside the through-hole. The second electrode layer is arranged on the resistance changing layer.
    Type: Application
    Filed: May 17, 2016
    Publication date: August 3, 2017
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Patent number: 9711720
    Abstract: A resistive random access memory including a first electrode, a separating medium, a resistance changing layer and a second electrode is disclosed. The first electrode has a mounting face. The separating medium is arranged on the first electrode and forms a through hole. A part of the first electrode is not covered by the separating medium. The separating medium has a first dielectric. The resistance changing layer extends along the part of the first electrode as well as along an inner face and the second face of the separating medium. The resistance changing layer has a second dielectric having a dielectric constant larger than a dielectric constant of the first dielectric by 2 or less. The second electrode is arranged on the resistance changing layer. In this arrangement, the problem of unstable forming voltage of the conventional resistive random access memory can be solved.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: July 18, 2017
    Assignee: National Sun Yat-Sen University
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Patent number: 9685610
    Abstract: A method for producing a resistive random access memory includes preparing a first metal layer and sputtering a resistive switching layer on the first metal layer. Surface treatment is conducted on the resistive switching layer by using a plasma containing mobile ions to dope the mobile ions into the resistive switching layer. The polarity of the mobile ions is opposite to the polarity of oxygen ions. Then, a second metal layer is sputtered on the resistive switching layer.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: June 20, 2017
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Publication number: 20170117466
    Abstract: A resistive random access memory overcomes the difficulty in reducing the forming voltage thereof. The resistive random access memory includes a first electrode layer, a separating portion, a lateral wall portion, an oxygen-containing rheostatic layer and a second electrode layer. The separating portion is arranged on the first electrode layer and forms a through-hole. The first electrode layer is exposed via the through-hole. The lateral wall portion is annularly arranged on an inner periphery of the separating portion defining the through-hole. The lateral wall portion is connected to the first electrode layer and includes a first dielectric. The oxygen-containing rheostatic layer covers the first electrode layer, the separating portion and the lateral wall portion. The oxygen-containing rheostatic layer includes a second dielectric smaller than the first dielectric. The second electrode layer is arranged on the oxygen-containing rheostatic layer.
    Type: Application
    Filed: December 3, 2015
    Publication date: April 27, 2017
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Publication number: 20170110658
    Abstract: A resistive random access memory includes a first electrode, a separating medium, a resistance changing layer and a second electrode. The first electrode has a mounting face. The separating medium has a first face in contact with the mounting face, a second face opposite to the first face, and an inner face extending between the first and second faces. The separating medium forms a through hole extending from the first to second face. A part of the mounting face is not covered by the separating medium. The separating medium has a first dielectric. The resistance changing layer extends along the part of the mounting face as well as the inner and second faces. The resistance changing layer has a second dielectric having a dielectric constant larger than a dielectric constant of the first dielectric by 2 or less. The second electrode is arranged on the resistance changing layer.
    Type: Application
    Filed: December 29, 2016
    Publication date: April 20, 2017
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Publication number: 20170025607
    Abstract: A method for producing a resistive random access memory includes preparing a first metal layer and sputtering a resistive switching layer on the first metal layer. Surface treatment is conducted on the resistive switching layer by using a plasma containing mobile ions to dope the mobile ions into the resistive switching layer. The polarity of the mobile ions is opposite to the polarity of oxygen ions. Then, a second metal layer is sputtered on the resistive switching layer.
    Type: Application
    Filed: October 7, 2016
    Publication date: January 26, 2017
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Patent number: 9496493
    Abstract: A resistive random access memory includes two electrode layers and a resistive switching layer mounted between the two electrode layers. The resistive switching layer consists essentially of insulating material with oxygen, metal material, and mobile ions. The polarity of the mobile ions is opposite to the polarity of oxygen ions. A method for producing a resistive random access memory includes preparing a first metal layer and sputtering a resistive switching layer on the first metal layer. Surface treatment is conducted on the resistive switching layer by using a plasma containing mobile ions to dope the mobile ions into the resistive switching layer. The polarity of the mobile ions is opposite to the polarity of oxygen ions. Then, a second metal layer is sputtered on the resistive switching layer.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: November 15, 2016
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Publication number: 20160240777
    Abstract: A resistive random access memory including a first electrode, a separating medium, a resistance changing layer and a second electrode is disclosed. The first electrode has a mounting face. The separating medium is arranged on the first electrode and forms a through hole. A part of the first electrode is not covered by the separating medium. The separating medium has a first dielectric. The resistance changing layer extends along the part of the first electrode as well as along an inner face and the second face of the separating medium. The resistance changing layer has a second dielectric having a dielectric constant larger than a dielectric constant of the first dielectric by 2 or less. The second electrode is arranged on the resistance changing layer. In this arrangement, the problem of unstable forming voltage of the conventional resistive random access memory can be solved.
    Type: Application
    Filed: June 9, 2015
    Publication date: August 18, 2016
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Publication number: 20160118579
    Abstract: A resistive random access memory includes two electrode layers and a resistive switching layer mounted between the two electrode layers. The resistive switching layer consists essentially of insulating material with oxygen, metal material, and mobile ions. The polarity of the mobile ions is opposite to the polarity of oxygen ions. A method for producing a resistive random access memory includes preparing a first metal layer and sputtering a resistive switching layer on the first metal layer. Surface treatment is conducted on the resistive switching layer by using a plasma containing mobile ions to dope the mobile ions into the resistive switching layer. The polarity of the mobile ions is opposite to the polarity of oxygen ions. Then, a second metal layer is sputtered on the resistive switching layer.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 28, 2016
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Publication number: 20160111640
    Abstract: A resistive random access memory including two electrode layers and a multi-resistance layer mounted between the two electrode layers. The multi-resistance layer consists essentially of insulating material with oxygen and lithium ions. The number of resistance states of a memory element can be increased by the resistive random access memory to increase the integration density of a memory module having a plurality of memory elements.
    Type: Application
    Filed: December 3, 2014
    Publication date: April 21, 2016
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan