Patents by Inventor Tianqing He

Tianqing He has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10509000
    Abstract: A handheld XRF device having a shutter including a calibration material. An automatic calibration sequence may be performed with the shutter in the closed position.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: December 17, 2019
    Assignee: Tribo Labs
    Inventors: Tianqing He, Carlos Camara, Mark G. Valentine, Dan Cuadra, Eric W. Wong, German Om, Andy Kotowski, Justen Harper
  • Patent number: 9897707
    Abstract: A method for X-ray detection using a charge-integrating X-ray detector including a photodetector array of pixels, each of which converts incident radiation into accumulated charge during an X-ray exposure, is provided. The method includes, for each pixel, reading out the accumulated charge from the pixel and determining an X-ray charge value from the read out accumulated charge. If the X-ray charge value is less than a photon counting threshold, the X-ray charge value is replaced with a quantized charge value representative of an estimated photon count and recording the quantized charge value as a recorded charge value. If, however, the X-ray charge is equal to or greater than the photon counting threshold, the X-charge value is recorded as the recorded charge value. The method allows operating a charge-integrating X-ray detector in a mixed photon-counting/analog output mode.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: February 20, 2018
    Inventors: Roger D. Durst, Gregory A. Wachter, Tianqing He
  • Publication number: 20170284739
    Abstract: An apparatus and method for quickly drying porous materials. A sealable chamber is connected to a cold trap which is connected to a vacuum pump. A sample is placed inside the sealable chamber. The vacuum pump is turned on and air is evacuated through the cold trap to the vacuum pump. An infrared lamp may be used to heat the chamber and sample therein directly or heated air may be allowed to enter the sealable chamber. Air may be drawn directly from the sealable chamber to the vacuum pump bypassing the cold trap. Various parameters may be used to determine if the drying process is complete, including the degree of vacuum achieved in the chamber.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 5, 2017
    Inventors: Tianqing He, Ali Regimand, Lawrence H. James, Peter D. Muse
  • Patent number: 9702626
    Abstract: An apparatus and method for quickly drying porous materials. A sealable chamber is connected to a cold trap which is connected to a vacuum pump. A sample is placed inside the sealable chamber. The vacuum pump is turned on and air is evacuated through the cold trap to the vacuum pump. An infrared lamp may be used to heat the chamber and sample therein directly or heated air may be allowed to enter the sealable chamber. Air may be drawn directly from the sealable chamber to the vacuum pump bypassing the cold trap. Various parameters may be used to determine if the drying process is complete, including the degree of vacuum achieved in the chamber.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: July 11, 2017
    Assignee: InstroTek, Inc.
    Inventors: Tianqing He, Ali Regimand, Lawrence H. James, Peter D. Muse
  • Publication number: 20160341677
    Abstract: A handheld XRF device having a shutter including a calibration material. An automatic calibration sequence may be performed with the shutter in the closed position.
    Type: Application
    Filed: May 19, 2016
    Publication date: November 24, 2016
    Inventors: Tianqing He, Carlos Camara, Mark G. Valentine, Dan Cuadra, Eric W. Wong, German Om, Andy Kotowski, Justen Harper
  • Publication number: 20150369929
    Abstract: A method for X-ray detection using a charge-integrating X-ray detector including a photodetector array of pixels, each of which converts incident radiation into accumulated charge during an X-ray exposure, is provided. The method includes, for each pixel, reading out the accumulated charge from the pixel and determining an X-ray charge value from the read out accumulated charge. If the X-ray charge value is less than a photon counting threshold, the X-ray charge value is replaced with a quantized charge value representative of an estimated photon count and recording the quantized charge value as a recorded charge value. If, however, the X-ray charge is equal to or greater than the photon counting threshold, the X-charge value is recorded as the recorded charge value. The method allows operating a charge-integrating X-ray detector in a mixed photon-counting/analog output mode.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 24, 2015
    Inventors: Roger D. DURST, Gregory A. WACHTER, Tianqing HE
  • Publication number: 20140366560
    Abstract: An apparatus and method for quickly drying porous materials. A sealable chamber is connected to a cold trap which is connected to a vacuum pump. A sample is placed inside the sealable chamber. The vacuum pump is turned on and air is evacuated through the cold trap to the vacuum pump. An infrared lamp may be used to heat the chamber and sample therein directly or heated air may be allowed to enter the sealable chamber. Air may be drawn directly from the sealable chamber to the vacuum pump bypassing the cold trap. Various parameters may be used to determine if the drying process is complete, including the degree of vacuum achieved in the chamber.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Inventors: Tianqing He, Ali Regimand, Lawrence H. James, Peter D. Muse
  • Patent number: 8826564
    Abstract: An apparatus and method for quickly drying porous materials. A sealable chamber is connected to a cold trap which is connected to a vacuum pump. A sample is placed inside the sealable chamber. The vacuum pump is turned on and air is evacuated through the cold trap to the vacuum pump. An infrared lamp may be used to heat the chamber and sample therein directly or heated air may be allowed to enter the sealable chamber. Air may be drawn directly from the sealable chamber to the vacuum pump bypassing the cold trap. Various parameters may be used to determine if the drying process is complete, including the degree of vacuum achieved in the chamber.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: September 9, 2014
    Assignee: InstroTek, Inc.
    Inventors: Tianqing He, Ali Regimand, Lawrence H. James, Peter D. Muse
  • Patent number: 8312776
    Abstract: An apparatus and method for determination of susceptibility of asphalt concrete materials to moisture damage. An asphalt sample of known bulk specific gravity (density) is placed inside a chamber filled with water, which is capable of heating the sample to a predetermined temperature. The chamber is pressurized by introduction of air pressure to a flexible membrane that decreases the volume within a chamber containing the sample and water, increasing the pore pressure in the sample. The pressure is then released and allowed to come to ambient pressure. This process is repeated a predetermined number of times (cycles). When a selected number of cycles are complete, the asphalt sample is removed from the chamber and its bulk specific gravity (density) measured again. The difference between the density before and after conditioning is an excellent method of rating the degree at which moisture would deteriorate asphalt samples due to introduction of moisture.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: November 20, 2012
    Assignee: InstroTek, Inc.
    Inventors: Ali Regimand, Lawrence H. James, Peter D. Muse, Keith Landreth, Tianqing He
  • Publication number: 20120285038
    Abstract: An apparatus and method for quickly drying porous materials. A sealable chamber is connected to a cold trap which is connected to a vacuum pump. A sample is placed inside the sealable chamber. The vacuum pump is turned on and air is evacuated through the cold trap to the vacuum pump. An infrared lamp may be used to heat the chamber and sample therein directly or heated air may be allowed to enter the sealable chamber. Air may be drawn directly from the sealable chamber to the vacuum pump bypassing the cold trap. Various parameters may be used to determine if the drying process is complete, including the degree of vacuum achieved in the chamber.
    Type: Application
    Filed: June 26, 2012
    Publication date: November 15, 2012
    Inventors: Tianqing He, Ali Regimand, Lawrence H. James, Peter D. Muse
  • Patent number: 8225526
    Abstract: An apparatus and method for quickly drying porous materials. A sealable chamber is connected to a cold trap which is connected to a vacuum pump. A sample is placed inside the sealable chamber. The vacuum pump is turned on and air is evacuated through the cold trap to the vacuum pump. Because evaporation may lower the temperature inside the sealable chamber, an infrared lamp may be used to heat the chamber and sample therein directly or heated air may be allowed to enter the sealable chamber in response to the vacuum created by the vacuum pump. Air may be drawn directly from the sealable chamber to the vacuum pump bypassing the cold trap. A load cell may be placed in the bottom of the sealable chamber to monitor the weight of a sample to determine if the drying process is complete. Other parameters could be used, including the degree of vacuum achieved in the chamber.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: July 24, 2012
    Assignee: InstroTek, Inc.
    Inventors: Tianqing He, Ali Regimand, Lawrence H. James, Peter D. Muse
  • Patent number: 8020451
    Abstract: An apparatus and method for determination of susceptibility of asphalt concrete materials to moisture damage. An asphalt sample of known bulk specific gravity (density) is placed inside a chamber filled with water, which is capable of heating the sample to a pre-determined temperature. The chamber is pressurized by introduction of air pressure to a flexible membrane that decreases the volume within a chamber containing the sample and water, increasing the pore pressure in the sample. The pressure is then released and allowed to come to ambient pressure. This process is repeated a predetermined number of times (cycles). When a selected number of cycles are complete, the asphalt sample is removed from the chamber and its bulk specific gravity (density) measured again. The difference between the density before and after conditioning is an excellent method of rating the degree at which moisture would deteriorate asphalt samples due to introduction of moisture.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: September 20, 2011
    Assignee: InstroTek, Inc.
    Inventors: Ali Regimand, Lawrence H. James, Peter D. Muse, Keith Landreth, Tianqing He
  • Publication number: 20110214484
    Abstract: An apparatus and method for determination of susceptibility of asphalt concrete materials to moisture damage. An asphalt sample of known bulk specific gravity (density) is placed inside a chamber filled with water, which is capable of heating the sample to a predetermined temperature. The chamber is pressurized by introduction of air pressure to a flexible membrane that decreases the volume within a chamber containing the sample and water, increasing the pore pressure in the sample. The pressure is then released and allowed to come to ambient pressure. This process is repeated a predetermined number of times (cycles). When a selected number of cycles are complete, the asphalt sample is removed from the chamber and its bulk specific gravity (density) measured again. The difference between the density before and after conditioning is an excellent method of rating the degree at which moisture would deteriorate asphalt samples due to introduction of moisture.
    Type: Application
    Filed: May 16, 2011
    Publication date: September 8, 2011
    Inventors: Ali Regimand, Lawrence H. James, Peter D. Muse, Keith Landreth, Tianqing He
  • Publication number: 20100319211
    Abstract: An apparatus and method for quickly drying porous materials. A sealable chamber is connected to a cold trap which is connected to a vacuum pump. A sample is placed inside the sealable chamber. The vacuum pump is turned on and air is evacuated through the cold trap to the vacuum pump. Because evaporation may lower the temperature inside the sealable chamber, an infrared lamp may be used to heat the chamber and sample therein directly or heated air may be allowed to enter the sealable chamber in response to the vacuum created by the vacuum pump. Air may be drawn directly from the sealable chamber to the vacuum pump bypassing the cold trap. A load cell may be placed in the bottom of the sealable chamber to monitor the weight of a sample to determine if the drying process is complete. Other parameters could be used, including the degree of vacuum achieved in the chamber.
    Type: Application
    Filed: June 24, 2010
    Publication date: December 23, 2010
    Inventors: Tianqing He, Ali Regimand, Lawrence H. James, Peter D. Muse
  • Publication number: 20100005898
    Abstract: An apparatus and method for determination of susceptibility of asphalt concrete materials to moisture damage. An asphalt sample of known bulk specific gravity (density) is placed inside a chamber filled with water, which is capable of heating the sample to a pre-determined temperature. The chamber is pressurized by introduction of air pressure to a flexible membrane that decreases the volume within a chamber containing the sample and water, increasing the pore pressure in the sample. The pressure is then released and allowed to come to ambient pressure. This process is repeated a predetermined number of times (cycles). When a selected number of cycles are complete, the asphalt sample is removed from the chamber and its bulk specific gravity (density) measured again. The difference between the density before and after conditioning is an excellent method of rating the degree at which moisture would deteriorate asphalt samples due to introduction of moisture.
    Type: Application
    Filed: July 9, 2008
    Publication date: January 14, 2010
    Inventors: Ali Regimand, Lawrence H. James, Peter D. Muse, Keith Landreth, Tianqing He
  • Patent number: 7098034
    Abstract: Methods, systems, and computer program products analyze asphalt samples for anti-stripping agents by: obtaining a sample comprising asphalt binder material; sensing a selected parameter associated with the sample (such as the acidity and/or alkalinity of the sample); and analyzing the sensed parameter to assess at least one of: (a) the presence of at least one anti-stripping agent in the sample; and (b) the level of at least one anti-stripping agent in the sample. The sample can be heated so that it emits exhaust gas and the exhaust gas (directly or indirectly) interrogated to determine its pH, or other constituents or properties, such as ammonia. Pre-defined mathematical relationships can be used to correlate the measured sensed data to the concentrations of the anti-stripping agent(s) in the sample undergoing analysis. The evaluation can be carried out in a generally automated rapid manner so that the test can be completed in about 10 minutes or less. Related devices and kits are also described.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: August 29, 2006
    Assignee: InstroTek, Inc.
    Inventors: Tianqing He, Ali Regimand, Peter D. Muse, Lawrence H. James
  • Patent number: 6995667
    Abstract: Methods, systems, and computer program products configured to track the geographic location of hazmat substances or devices including same, such as nuclear gauges with a radioactive component, include mounting a tracking device in proximity to the substance, the tracking device configured to provide at least one tracking signal that is detectable from a remote location to thereby allow its geographic location to be determined remotely.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: February 7, 2006
    Assignee: InstroTek, Inc.
    Inventors: Tianqing He, Peter D. Muse, Ali Regimand, Lawrence H. James
  • Publication number: 20050253703
    Abstract: Methods, systems, and computer program products configured to track the geographic location of hazmat substances or devices including same, such as nuclear gauges with a radioactive component, include mounting a tracking device in proximity to the substance, the tracking device configured to provide at least one tracking signal that is detectable from a remote location to thereby allow its geographic location to be determined remotely.
    Type: Application
    Filed: December 23, 2002
    Publication date: November 17, 2005
    Inventors: Tianqing He, Peter Muse, Ali Regimand, Lawrence James
  • Publication number: 20050102851
    Abstract: An apparatus and method for quickly drying porous materials. A sealable chamber is connected to a cold trap which is connected to a vacuum pump. A sample is placed inside the sealable chamber. The vacuum pump is turned on and air is evacuated through the cold trap to the vacuum pump. Because evaporation may lower the temperature inside the sealable chamber, an infrared lamp may be used to heat the chamber and sample therein directly or heated air may be allowed to enter the sealable chamber in response to the vacuum created by the vacuum pump. Air may be drawn directly from the sealable chamber to the vacuum pump bypassing the cold trap. A load cell may be placed in the bottom of the sealable chamber to monitor the weight of a sample to determine if the drying process is complete. Other parameters could be used, including the degree of vacuum achieved in the chamber.
    Type: Application
    Filed: November 15, 2003
    Publication date: May 19, 2005
    Inventors: Tianqing He, Ali Regimand, Lawrence James, Peter Muse
  • Publication number: 20040121473
    Abstract: Methods, systems, and computer program products analyze asphalt samples for anti-stripping agents by: obtaining a sample comprising asphalt binder material; sensing a selected parameter associated with the sample (such as the acidity and/or alkalinity of the sample); and analyzing the sensed parameter to assess at least one of: (a) the presence of at least one anti-stripping agent in the sample; and (b) the level of at least one anti-stripping agent in the sample. The sample can be heated so that it emits exhaust gas and the exhaust gas (directly or indirectly) interrogated to determine its pH, or other constituents or properties, such as ammonia. Pre-defined mathematical relationships can be used to correlate the measured sensed data to the concentrations of the anti-stripping agent(s) in the sample undergoing analysis. The evaluation can be carried out in a generally automated rapid manner so that the test can be completed in about 10 minutes or less. Related devices and kits are also described.
    Type: Application
    Filed: December 23, 2002
    Publication date: June 24, 2004
    Inventors: Tianqing He, Ali Regimand, Peter D. Muse, Lawrence H. James