Patents by Inventor Tianqing Liao

Tianqing Liao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11862493
    Abstract: A method includes determining, based on sensor data, that one or more components of substrate processing equipment are within a pre-failure window that is after a normal operation window. Corresponding data points in the normal operation window are substantially stable along a first health index value. The corresponding data points in the pre-failure window increase from the first health index value to a peak at a second health index value. Responsive to the determining that the one or more components are within the pre-failure window, the method further includes causing performance of a corrective action associated with the one or more components of the substrate processing equipment.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: January 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Tianqing Liao, Sima Didari, Harikrishnan Rajagopal
  • Publication number: 20220301903
    Abstract: A method includes determining, based on sensor data, that one or more components of substrate processing equipment are within a pre-failure window that is after a normal operation window. Corresponding data points in the normal operation window are substantially stable along a first health index value. The corresponding data points in the pre-failure window increase from the first health index value to a peak at a second health index value. Responsive to the determining that the one or more components are within the pre-failure window, the method further includes causing performance of a corrective action associated with the one or more components of the substrate processing equipment.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 22, 2022
    Inventors: Tianqing Liao, Sima Didari, Harikrishnan Rajagopal
  • Patent number: 11348813
    Abstract: Methods, systems, and non-transitory computer readable medium are provided for correcting component failures in ion implant semiconductor manufacturing tool. A method includes receiving, from sensors associated with an ion implant tool, current sensor data corresponding to features; performing feature analysis to generate additional features for the current sensor data; providing the additional features as input to a trained machine learning model; obtaining one or more outputs from the trained machine learning model, where the one or more outputs are indicative of a level of confidence of a predicted window; predicting, based on the level of confidence of the predicted window, whether one or more components of the ion implant tool are within a pre-failure window; and responsive to predicting that the one or more components are within the pre-failure window, performing a corrective action associated with the ion implant tool.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: May 31, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Tianqing Liao, Sima Didari, Harikrishnan Rajagopal
  • Patent number: 11133204
    Abstract: A server trains a neural network by feeding a first set of input time-series data of one or more sensors of a first processing chamber that is within specification to the neural network to produce a corresponding first set of output time-series data. The server calculates a first error. The server feeds a second set of input time-series data from corresponding one or more sensors associated with a second processing chamber under test to the trained neural network to produce a corresponding second set of output time-series data. The server calculates a second error.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: September 28, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Heng Hao, Tianqing Liao, Sima Didari, Harikrishnan Rajagopal
  • Publication number: 20200251360
    Abstract: Methods, systems, and non-transitory computer readable medium are provided for correcting component failures in ion implant semiconductor manufacturing tool. A method includes receiving, from sensors associated with an ion implant tool, current sensor data corresponding to features; performing feature analysis to generate additional features for the current sensor data; providing the additional features as input to a trained machine learning model; obtaining one or more outputs from the trained machine learning model, where the one or more outputs are indicative of a level of confidence of a predicted window; predicting, based on the level of confidence of the predicted window, whether one or more components of the ion implant tool are within a pre-failure window; and responsive to predicting that the one or more components are within the pre-failure window, performing a corrective action associated with the ion implant tool.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 6, 2020
    Inventors: Tianqing Liao, Sima Didari, Harikrishnan Rajagopal
  • Publication number: 20200243359
    Abstract: A server trains a neural network by feeding a first set of input time-series data of one or more sensors of a first processing chamber that is within specification to the neural network to produce a corresponding first set of output time-series data. The server calculates a first error. The server feeds a second set of input time-series data from corresponding one or more sensors associated with a second processing chamber under test to the trained neural network to produce a corresponding second set of output time-series data. The server calculates a second error.
    Type: Application
    Filed: January 29, 2019
    Publication date: July 30, 2020
    Inventors: Heng HAO, Tianqing LIAO, Sima DIDARI, Harikrishnan RAJAGOPAL
  • Publication number: 20200104639
    Abstract: Methods, systems, and non-transitory computer readable medium are provided for long short-term memory (LSTM) anomaly detection for multi-sensor equipment monitoring. A method includes training a LSTM recurrent neural network (RNN) model for semiconductor processing fault detection. The training includes generating training data for the LSTM RNN model and providing the training data to train the LSTM RNN model on first training input and first target output to generate a trained LSTM RNN model for the semiconductor processing fault detection. The training data includes the first training input and the first target output based on normal runs of manufacturing processes of semiconductor processing equipment. Another method includes providing input based on runs of manufacturing processes of semiconductor processing equipment to a trained LSTM RNN model; obtaining one or more outputs from the trained LSTM RNN model; and using the one or more outputs for semiconductor processing fault detection.
    Type: Application
    Filed: September 24, 2019
    Publication date: April 2, 2020
    Inventors: Sima Didari, Tianqing Liao, Harikrishnan Rajagopal