Patents by Inventor Tianzong Xu
Tianzong Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12276017Abstract: Multi-layer metal or pseudometallic materials having engineered anisotropy are disclosed. The multi-layer materials having defined engineered grain orientations in each layer of the multi-layer material and bond layers between adjacent layers orthogonal to the grain orientations. This configuration distributes applied stress across the plurality of layers in the multi-layer metal material and around a neutral axis of the multi-layer metal material and increases the overall mechanical properties of the disclosed multi-layer metal material relative to conventional wrought metal materials of the same or similar chemical constitution. The microstructure of each layer, group of layers, or across multiple layers may be tailored to the intended application of a device made from the material. Individual layers may be tuned for property variations, such as gradients, or to adjust the bond layer characteristics.Type: GrantFiled: May 21, 2021Date of Patent: April 15, 2025Assignee: VACTRONIX SCIENTIFIC, LLCInventors: Scott P. Carpenter, Tianzong Xu, Harshal Surangalikar
-
Patent number: 12106924Abstract: An Inverted Cylindrical Magnetron (ICM) System and Methods of Use is disclosed herein generally comprising a co-axial central anode concentrically located within a first annular end anode and a second annular end anode; a process chamber including a top end and a bottom end in which the first annular end anode and the second annular end anode are coaxially disposed, whereby the first annular end anode, the second annular end anode, and the central anode form a 3-anode configuration to provide electric field uniformity, and the process chamber including a central annular space coupled to a tube insulator disposed about the central annular space wall; a cathode concentrically coupled to the tube insulator and a target; and a plurality of multi-zone electromagnets or hybrid electro-permanent magnets surrounding the exterior of the process chamber providing a tunable magnetic field.Type: GrantFiled: May 11, 2021Date of Patent: October 1, 2024Assignee: Vactronix Scientific, LLCInventors: Tianzong Xu, George Xinsheng Guo, Oahn Nguyen
-
Patent number: 11754423Abstract: An intelligent skin based on a small-size distributed optical fiber sensing array. The intelligent skin includes an epidermis sensing array, an embedded optical fiber sensing array, a data collection system module, and a data processing mode recognition module. The body of the intelligent skin is made of a flexible material. The embedded optical fiber sensing array in an epidermis includes a plurality of all-fiber interferomatic sensing arrays. The data collection system module includes a broadband light source, an optical combiner/splitter, an optical path change-over switch, a signal detector and a computer. The data processing mode recognition module includes mode recognition and training of a neural network. The intelligent skin further includes an external display software used to perform intelligent sensing recognition for sense of touch, position, shape, and ingredient, temperature and vibration of an object and so on.Type: GrantFiled: August 11, 2021Date of Patent: September 12, 2023Assignee: SHANDONG UNIVERSITY OF SCIENCE AND TECHNOLOGYInventors: Lijun Li, Tianzong Xu, Qian Ma, Zhaochuan Zhang, Xiaolei Liu, Jiajun Shen
-
Publication number: 20230132161Abstract: An intelligent skin based on a small-size distributed optical fiber sensing array. The intelligent skin includes an epidermis sensing array, an embedded optical fiber sensing array, a data collection system module, and a data processing mode recognition module. The body of the intelligent skin is made of a flexible material. The embedded optical fiber sensing array in an epidermis includes a plurality of all-fiber interferomatic sensing arrays. The data collection system module includes a broadband light source, an optical combiner/splitter, an optical path change-over switch, a signal detector and a computer. The data processing mode recognition module includes mode recognition and training of a neural network. The intelligent skin further includes an external display software used to perform intelligent sensing recognition for sense of touch, position, shape, and ingredient, temperature and vibration of an object and so on.Type: ApplicationFiled: August 11, 2021Publication date: April 27, 2023Inventors: Lijun LI, Tianzong XU, Qian MA, Zhaochuan ZHANG, Xiaolei LIU, Jiajun SHEN
-
Patent number: 11624635Abstract: The present invention provides a method for realizing high stability of micro-nano optical fiber sagnac loop output by means of filter mode control, and belongs to the field of photoelectric detection technologies. In the present invention, the optical filter is combined with the micro-nano optical fiber Sagnac interference structure so as to control the Sagnac in-loop working mode by use of the mode selection characteristics of the filter. In this way, the interference mode is suppressed to better concentrate energy on the working mode, thereby improving the spectrum output uniformity and stability of the Sagnac loop. Further, the reflection and transmission modes of the optical filter do not participate in interference spectrum output and thus the performance of the system will not be affected. By designing and changing the parameters of the optical filter, the output characteristics of the interferometer can be dynamically controlled.Type: GrantFiled: June 21, 2021Date of Patent: April 11, 2023Assignee: SHANDONG UNIVERSITY OF SCIENCE AND TECHNOLOGYInventors: Lijun Li, Tianzong Xu, Qian Ma, Xiaolei Liu, Jianhong Sun, Zhaochuan Zhang
-
Publication number: 20230101905Abstract: The present invention provides a method for realizing high stability of micro-nano optical fiber sagnac loop output by means of filter mode control, and belongs to the field of photoelectric detection technologies. In the present invention, the optical filter is combined with the micro-nano optical fiber Sagnac interference structure so as to control the Sagnac in-loop working mode by use of the mode selection characteristics of the filter. In this way, the interference mode is suppressed to better concentrate energy on the working mode, thereby improving the spectrum output uniformity and stability of the Sagnac loop. Further, the reflection and transmission modes of the optical filter do not participate in interference spectrum output and thus the performance of the system will not be affected. By designing and changing the parameters of the optical filter, the output characteristics of the interferometer can be dynamically controlled.Type: ApplicationFiled: June 21, 2021Publication date: March 30, 2023Inventors: Lijun LI, Tianzong XU, Qian MA, Xiaolei LIU, Jianhong SUN, Zhaochuan ZHANG
-
Patent number: 11530958Abstract: An intelligent optical fiber tactile sounding system and a method thereof, and belongs to the field of intelligent optical fiber sensing. The system includes a flexible optical fiber tactile sensing array, a photoelectric detection system, an intelligent pressure analysis software and an acoustic emission system; a small-scale distributed tactile sensing array is constructed by embedding a fiber-core mismatched optical fiber interferometric sensor into a flexible substrate material and performing sensing region division for an asymmetrical structure with an optical fiber structure as a delimiting line; a tactile sensor transmits tactile signals to the photoelectric detection system in the form of optical signals, the photoelectric detection system inputs these pressure signals into the intelligent pressure analysis software to determine a region and a size of a tactile source, and then sends an instruction to the acoustic emission system to enable the acoustic emission system to emit different sounds.Type: GrantFiled: August 11, 2021Date of Patent: December 20, 2022Assignee: SHANDONG UNIVERSITY OF SCIENCE AND TECHNOLOGYInventors: Lijun Li, Tianzong Xu, Qian Ma, Zhaochuan Zhang, Jiajun Shen
-
Publication number: 20220372610Abstract: Multi-layer metal or pseudometallic materials having engineered anisotropy are disclosed. The multi-layer materials having defined engineered grain orientations in each layer of the multi-layer material and bond layers between adjacent layers orthogonal to the grain orientations. This configuration distributes applied stress across the plurality of layers in the multi-layer metal material and around a neutral axis of the multi-layer metal material and increases the overall mechanical properties of the disclosed multi-layer metal material relative to conventional wrought metal materials of the same or similar chemical constitution. The microstructure of each layer, group of layers, or across multiple layers may be tailored to the intended application of a device made from the material. Individual layers may be tuned for property variations, such as gradients, or to adjust the bond layer characteristics.Type: ApplicationFiled: May 21, 2021Publication date: November 24, 2022Inventors: Scott P. Carpenter, Tianzong Xu, Harshal Surangalikar
-
Publication number: 20220299387Abstract: An intelligent optical fiber tactile sounding system and a method thereof, and belongs to the field of intelligent optical fiber sensing. The system includes a flexible optical fiber tactile sensing array, a photoelectric detection system, an intelligent pressure analysis software and an acoustic emission system; a small-scale distributed tactile sensing array is constructed by embedding a fiber-core mismatched optical fiber interferometric sensor into a flexible substrate material and performing sensing region division for an asymmetrical structure with an optical fiber structure as a delimiting line ; a tactile sensor transmits tactile signals to the photoelectric detection system in the form of optical signals, the photoelectric detection system inputs these pressure signals into the intelligent pressure analysis software to determine a region and a size of a tactile source, and then sends an instruction to the acoustic emission system to enable the acoustic emission system to emit different sounds.Type: ApplicationFiled: August 11, 2021Publication date: September 22, 2022Inventors: Lijun LI, Tianzong XU, Qian MA, Zhaochuan ZHANG, Jiajun SHEN
-
Publication number: 20210375573Abstract: An Inverted Cylindrical Magnetron (ICM) System and Methods of Use is disclosed herein generally comprising a co-axial central anode concentrically located within a first annular end anode and a second annular end anode; a process chamber including a top end and a bottom end in which the first annular end anode and the second annular end anode are coaxially disposed, whereby the first annular end anode, the second annular end anode, and the central anode form a 3-anode configuration to provide electric field uniformity, and the process chamber including a central annular space coupled to a tube insulator disposed about the central annular space wall; a cathode concentrically coupled to the tube insulator and a target; and a plurality of multi-zone electromagnets or hybrid electro-permanent magnets surrounding the exterior of the process chamber providing a tunable magnetic field.Type: ApplicationFiled: May 11, 2021Publication date: December 2, 2021Inventors: Tianzong Xu, George Xinsheng Guo, Oahn Nguyen
-
Patent number: 11004644Abstract: An Inverted Cylindrical Magnetron (ICM) System and Methods of Use is disclosed herein generally comprising a co-axial central anode concentrically located within a first annular end anode and a second annular end anode; a process chamber including a top end and a bottom end in which the first annular end anode and the second annular end anode are coaxially disposed, whereby the first annular end anode, the second annular end anode, and the central anode form a 3-anode configuration to provide electric field uniformity, and the process chamber including a central annular space coupled to a tube insulator disposed about the central annular space wall; a cathode concentrically coupled to the tube insulator and a target; and a plurality of multi-zone electromagnets or hybrid electro-permanent magnets surrounding the exterior of the process chamber providing a tunable magnetic field.Type: GrantFiled: May 1, 2017Date of Patent: May 11, 2021Assignee: Vactronix Scientific, LLCInventors: Tianzong Xu, George Xinsheng Guo, Oahn Nguyen
-
Publication number: 20170301502Abstract: An Inverted Cylindrical Magnetron (ICM) System and Methods of Use is disclosed herein generally comprising a co-axial central anode concentrically located within a first annular end anode and a second annular end anode; a process chamber including a top end and a bottom end in which the first annular end anode and the second annular end anode are coaxially disposed, whereby the first annular end anode, the second annular end anode, and the central anode form a 3-anode configuration to provide electric field uniformity, and the process chamber including a central annular space coupled to a tube insulator disposed about the central annular space wall; a cathode concentrically coupled to the tube insulator and a target; and a plurality of multi-zone electromagnets or hybrid electro-permanent magnets surrounding the exterior of the process chamber providing a tunable magnetic field.Type: ApplicationFiled: May 1, 2017Publication date: October 19, 2017Inventors: Tianzong Xu, George Xinsheng GUO, Oahn NGUYEN
-
Patent number: 9640359Abstract: An Inverted Cylindrical Magnetron (ICM) System and Methods of Use is disclosed herein generally comprising a co-axial central anode concentrically located within a first annular end anode and a second annular end anode; a process chamber including a top end and a bottom end in which the first annular end anode and the second annular end anode are coaxially disposed, whereby the first annular end anode, the second annular end anode, and the central anode form a 3-anode configuration to provide electric field uniformity, and the process chamber including a central annular space coupled to a tube insulator disposed about the central annular space wall; a cathode concentrically coupled to the tube insulator and a target; and a plurality of multi-zone electromagnets or hybrid electro-permanent magnets surrounding the exterior of the process chamber providing a tunable magnetic field.Type: GrantFiled: March 7, 2013Date of Patent: May 2, 2017Assignee: Vactronix Scientific, Inc.Inventors: Tianzong Xu, George Xinsheng Guo, Oanh Nguyen
-
Publication number: 20140042022Abstract: An Inverted Cylindrical Magnetron (ICM) System and Methods of Use is disclosed herein generally comprising a co-axial central anode concentrically located within a first annular end anode and a second annular end anode; a process chamber including a top end and a bottom end in which the first annular end anode and the second annular end anode are coaxially disposed, whereby the first annular end anode, the second annular end anode, and the central anode form a 3-anode configuration to provide electric field uniformity, and the process chamber including a central annular space coupled to a tube insulator disposed about the central annular space wall; a cathode concentrically coupled to the tube insulator and a target; and a plurality of multi-zone electromagnets or hybrid electro-permanent magnets surrounding the exterior of the process chamber providing a tunable magnetic field.Type: ApplicationFiled: March 7, 2013Publication date: February 13, 2014Applicant: Palmaz Scientific, Inc.Inventors: Tianzong Xu, George Xinsheng Guo, Oanh Nguyen
-
Patent number: 6380096Abstract: An integrated in situ oxide etch process particularly useful for a counterbore dual-damascene structure over copper having in one inter-layer dielectric level a lower nitride stop layer, a lower oxide dielectric, a lower nitride stop layer, an upper oxide dielectric layer, and an anti-reflective coating (ARC). The process is divided into a counterbore etch and a trench etch with photolithography for each, and each step is preferably performed in a high-density plasma reactor having an inductively coupled plasma source primarily generating the plasma and a capacitively coupled pedestal supporting the wafer and producing the bias power. The counterbore etch preferably includes at least four substeps of opening the ARC, etching through the upper oxide and nitride layers, selectively etching the lower oxide layer but stopping on the lower nitride layer, and a post-etch treatment for removing residue.Type: GrantFiled: November 30, 1998Date of Patent: April 30, 2002Assignee: Applied Materials, Inc.Inventors: Hoiman Hung, Joseph P Caulfield, Sum-Yee Betty Tang, Jian Ding, Tianzong Xu
-
Publication number: 20010008226Abstract: An integrated in situ oxide etch process particularly useful for a counterbore dual-damascene structure over copper having in one inter-layer dielectric level a lower nitride stop layer, a lower oxide dielectric, a lower nitride stop layer, an upper oxide dielectric layer, and an anti-reflective coating (ARC). The process is divided into a counterbore etch and a trench etch with photolithography for each, and each step is preferably performed in a high-density plasma reactor having an inductively coupled plasma source primarily generating the plasma and a capacitively coupled pedestal supporting the wafer and producing the bias power. The counterbore etch preferably includes at least four substeps of opening the ARC, etching through the upper oxide and nitride layers, selectively etching the lower oxide layer but stopping on the lower nitride layer, and a post-etch treatment for removing residue.Type: ApplicationFiled: November 30, 1998Publication date: July 19, 2001Inventors: HOIMAN HUNG, JOSEPH P. CAULFIELD, SUM-YEE BETTY TANG, JIAN DING, TIANZONG XU