Patents by Inventor Tiefeng Shi

Tiefeng Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250118543
    Abstract: Methods, apparatuses and systems for detecting and managing arc events during a plasma chamber process include receiving impedance data measured during a plasma chamber process, analyzing the impedance data to determine if an arc event is occurring during the plasma chamber process, and if it is determined that an arc event is occurring, an action is taken to suppress an arc of the arc event. In some instances, a machine learning model that has been trained to recognize when an arc event is occurring from received measurement data is used to determine if an arc event is occurring.
    Type: Application
    Filed: November 15, 2024
    Publication date: April 10, 2025
    Inventors: Tiefeng SHI, Gang FU, Keith A. MILLER
  • Patent number: 12176190
    Abstract: Methods, apparatuses and systems for detecting and managing arc events during a plasma chamber process include receiving impedance data measured during a plasma chamber process, analyzing the impedance data to determine if an arc event is occurring during the plasma chamber process, and if it is determined that an arc event is occurring, an action is taken to suppress an arc of the arc event. In some instances, a machine learning model that has been trained to recognize when an arc event is occurring from received measurement data is used to determine if an arc event is occurring.
    Type: Grant
    Filed: March 7, 2023
    Date of Patent: December 24, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Tiefeng Shi, Gang Fu, Keith A. Miller
  • Publication number: 20240304429
    Abstract: Methods, apparatuses and systems for detecting and managing arc events during a plasma chamber process include receiving impedance data measured during a plasma chamber process, analyzing the impedance data to determine if an arc event is occurring during the plasma chamber process, and if it is determined that an arc event is occurring, an action is taken to suppress an arc of the arc event. In some instances, a machine learning model that has been trained to recognize when an arc event is occurring from received measurement data is used to determine if an arc event is occurring.
    Type: Application
    Filed: March 7, 2023
    Publication date: September 12, 2024
    Inventors: Tiefeng SHI, Gang FU, Keith A. MILLER
  • Patent number: 12088115
    Abstract: High efficiency resonator coils for large gap resonant wireless power transfer (WPT), and a coil design methodology are disclosed. Resonator coils comprise a coil topology defined by coil parameters in which turn dimensions, such as trace widths and spacings of each turn, are configured to reduce or minimize a variance of the z component of magnetic field, over an area of a charging plane at a specified distance, or distance range, from the coil. A Tx resonator coil comprises a capacitor arrangement of tuning and network-matching capacitors for improved coil-to-coil efficiency and end-to-end WPT system performance, e.g. for applications such as through-wall WPT, in the range of tens of watts to at least hundreds of watts. Planar resonator coil topologies are compatible with fabrication using low cost PCB technology, e.g. with multi-layer metal, to reduce losses and improve thermal performance.
    Type: Grant
    Filed: October 25, 2023
    Date of Patent: September 10, 2024
    Assignee: GAN SYSTEMS INC.
    Inventors: Tiefeng Shi, Paul Wiener
  • Publication number: 20240186831
    Abstract: High efficiency resonator coils for large gap resonant wireless power transfer (WPT), and a coil design methodology are disclosed. Resonator coils comprise a coil topology defined by coil parameters in which turn dimensions, such as trace widths and spacings of each turn, are configured to reduce or minimize a variance of the z component of magnetic field, over an area of a charging plane at a specified distance, or distance range, from the coil. A Tx resonator coil comprises a capacitor arrangement of tuning and network-matching capacitors for improved coil-to-coil efficiency and end-to-end WPT system performance, e.g. for applications such as through-wall WPT, in the range of tens of watts to at least hundreds of watts. Planar resonator coil topologies are compatible with fabrication using low cost PCB technology, e.g. with multi-layer metal, to reduce losses and improve thermal performance.
    Type: Application
    Filed: October 25, 2023
    Publication date: June 6, 2024
    Inventors: Tiefeng SHI, Paul WIENER
  • Publication number: 20240112886
    Abstract: Embodiments provided herein generally include apparatus, plasma processing systems and methods for dynamic impedance matching across multiple frequency bands of a power source. An example method includes amplifying a broadband signal, splitting the amplified broadband signal across a plurality of channel paths coupled to an impedance matching network, and adjusting at least one first impedance associated with the impedance matching network to achieve a second impedance within a threshold value based at least in part on feedback associated with the broadband signal. The impedance matching network includes a plurality of impedance matching circuits coupled to plasma excitation circuitry, and each of the impedance matching circuits is coupled to a different path of the plurality of channel paths and an output node.
    Type: Application
    Filed: June 13, 2023
    Publication date: April 4, 2024
    Inventors: Tiefeng SHI, Gang FU, Keith A. MILLER
  • Patent number: 11929802
    Abstract: An unmanned aerial vehicle can be configured to adjust a beam direction, provide path information, act as a base station, act as a cluster head, include an improved directional antenna or array of directional antennas, communicate in a collaboration using belief propagation, receive communications from a serving station aiding in navigation or improved signal performance, or the like.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: March 12, 2024
    Assignee: Apple Inc.
    Inventors: Feng Xue, Mustafa Akdeniz, Seong-Youp John Suh, Shu-Ping Yeh, Eduardo Alban, Philippe Auzas, Jonathan Byrne, Mark Davis, David Gomez Gutierrez, Timo Huusari, Bradley Alan Jackson, Ranganadh Karella, Sreenivas Kasturi, Mengkun Ke, Ching-Yu Liao, Tiefeng Shi, Daniel Tong, Candy Yiu
  • Patent number: 11898236
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a processing chamber for processing a substrate comprises a sputtering target, a chamber wall at least partially defining an inner volume within the processing chamber and connected to ground, a power source comprising an RF power source, a process kit surrounding the sputtering target and a substrate support, an auto capacitor tuner (ACT) connected to ground and the sputtering target, and a controller configured to energize the cleaning gas disposed in the inner volume of the processing chamber to create the plasma and tune the sputtering target using the ACT to maintain a predetermined potential difference between the plasma in the inner volume and the process kit during the etch process to remove sputtering material from the process kit, wherein the predetermined potential difference is based on a resonant point of the ACT.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: February 13, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zhiyong Wang, Halbert Chong, John C. Forster, Irena H. Wysok, Tiefeng Shi, Gang Fu, Renu Whig, Keith A Miller, Sundarapandian Ramalinga Vijayalakshmi Reddy, Jianxin Lei, Rongjun Wang, Tza-Jing Gung, Kirankumar Neelasandra Savandaiah, Avinash Nayak, Lei Zhou
  • Patent number: 11676801
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a matching network for use with a plasma processing chamber comprises an input configured to connect to a power source, an output configured to connect to the plasma processing chamber, a V/I sensor connected between the input of the matching network and an output of the power source, a load capacitor connected in parallel with at least one capacitor connected in series with a load switch, a tuning capacitor connected in series with at least one capacitor connected in parallel with a tuning switch, and a multiple level pulsing phase/magnitude module connected to the V/I sensor and to a multiple level pulsing synchronization switch driver connected to each of the load switch and the tuning switch for activating at least one of the load switch and the tuning switch in response to a control signal, which is based on a V/I sensor measurement, received from the power source.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: June 13, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Tiefeng Shi, Keith A. Miller, Gang Fu
  • Publication number: 20230122956
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a processing chamber for processing a substrate comprises a sputtering target, a chamber wall at least partially defining an inner volume within the processing chamber and connected to ground, a power source comprising an RF power source, a process kit surrounding the sputtering target and a substrate support, an auto capacitor tuner (ACT) connected to ground and the sputtering target, and a controller configured to energize the cleaning gas disposed in the inner volume of the processing chamber to create the plasma and tune the sputtering target using the ACT to maintain a predetermined potential difference between the plasma in the inner volume and the process kit during the etch process to remove sputtering material from the process kit, wherein the predetermined potential difference is based on a resonant point of the ACT.
    Type: Application
    Filed: October 20, 2021
    Publication date: April 20, 2023
    Inventors: Zhiyong WANG, Halbert CHONG, John C. FORSTER, Irena H. WYSOK, Tiefeng SHI, Gang FU, Renu WHIG, Keith A. MILLER, Sundarapandian Ramalinga Vijayalakshmi REDDY, Jianxin LEI, Rongjun WANG, Tza-Jing GUNG, Kirankumar Neelasandra SAVANDAIAH, Avinash NAYAK, Lei ZHOU
  • Publication number: 20230075393
    Abstract: Apparatus, systems and methods for load-adaptive 3D wireless charging are disclosed. In a 3D charging system of an example embodiment, features comprise a 3D coil design that provides magnetic field distribution coverage for a 3D charging space, e.g. hemi-spherical space/volume; a push-pull class EF2 PA with EMI filter and transmitter circuitry that provides constant current to the 3D coil, with current direction, phase and timing control capability to adapt to load conditions; reactance shift detection circuitry comprising a voltage sensor, current sensor and phase detector and hardware for fast, real-time, computation of reactance and comparison to upper and lower limits for load-adaptive reactance tuning and for auto-protection; and a switchable tuning capacitor network arrangement of shunt and series capacitors configured for auto-tuning of input impedance, e.g. in response to a X detection trigger signal, which enables both coarse-tuning and uniform fine-tuning steps over an extended reactance range.
    Type: Application
    Filed: February 5, 2021
    Publication date: March 9, 2023
    Inventors: Tiefeng SHI, Paul WIENER
  • Publication number: 20220384149
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a matching network for use with a plasma processing chamber comprises an input configured to connect to a power source, an output configured to connect to the plasma processing chamber, a V/I sensor connected between the input of the matching network and an output of the power source, a load capacitor connected in parallel with at least one capacitor connected in series with a load switch, a tuning capacitor connected in series with at least one capacitor connected in parallel with a tuning switch, and a multiple level pulsing phase/magnitude module connected to the V/I sensor and to a multiple level pulsing synchronization switch driver connected to each of the load switch and the tuning switch for activating at least one of the load switch and the tuning switch in response to a control signal, which is based on a V/I sensor measurement, received from the power source.
    Type: Application
    Filed: May 28, 2021
    Publication date: December 1, 2022
    Inventors: Tiefeng SHI, Keith A. MILLER, Gang FU
  • Publication number: 20220247219
    Abstract: A wireless power transfer (WPT) system is provided to drive multiple resonator coils utilizing one power amplifier. The WPT system may include a power amplifier, a differential 1:N power divider, impedance inversion circuits and multiple resonator coils. The WPT system may further include auto-tuning circuits with sensors that facilitate the efficient driving of the multiple resonator coils. As well, there is provided various 3D shaped coil topologies that are comprised of two or more separate coils. The 3D coil topology designs each provide a particular 3D magnetic field for wireless charging.
    Type: Application
    Filed: January 20, 2022
    Publication date: August 4, 2022
    Inventors: Tiefeng SHI, Paul WIENER
  • Publication number: 20220069876
    Abstract: An unmanned aerial vehicle can be configured to adjust a beam direction, provide path information, act as a base station, act as a cluster head, include an improved directional antenna or array of directional antennas, communicate in a collaboration using belief propagation, receive communications from a serving station aiding in navigation or improved signal performance, or the like.
    Type: Application
    Filed: November 27, 2019
    Publication date: March 3, 2022
    Inventors: Feng XUE, Mustafa AKDENIZ, Seong-Youp John SUH, Shu-ping YEH, Eduardo ALBAN, Philippe AUZAS, Jonathan BYRNE, Mark DAVIS, David GOMEZ GUTIERREZ, Timo HUUSARI, Bradley Alan JACKSON, Ranganadh KARELLA, Sreenivas KASTURI, Mengkun KE, Ching-Yu LIAO, Tiefeng SHI, Daniel TONG, Candy YIU
  • Publication number: 20210184500
    Abstract: High efficiency resonator coils for large gap resonant wireless power transfer (WPT), and a coil design methodology are disclosed. Resonator coils comprise a coil topology defined by coil parameters in which turn dimensions, such as trace widths and spacings of each turn, are configured to reduce or minimize a variance of the z component of magnetic field, over an area of a charging plane at a specified distance, or distance range, from the coil. A Tx resonator coil comprises a capacitor arrangement of tuning and network-matching capacitors for improved coil-to-coil efficiency and end-to-end WPT system performance, e.g. for applications such as through-wall WPT, in the range of tens of watts to at least hundreds of watts. Planar resonator coil topologies are compatible with fabrication using low cost PCB technology, e.g. with multi-layer metal, to reduce losses and improve thermal performance.
    Type: Application
    Filed: November 10, 2020
    Publication date: June 17, 2021
    Inventors: Tiefeng SHI, Paul WIENER
  • Patent number: 10143091
    Abstract: Systems and apparatus are provided for solid-state oscillators and related resonant circuitry. An exemplary oscillator system includes an amplifier having an amplifier input and an amplifier output and resonant circuitry coupled between the amplifier output and the amplifier input. In exemplary embodiments, the resonant circuitry includes an annular resonance structure that is substantially symmetrical and includes a pair of arcuate inductive elements. In accordance with one or more embodiments, the resonant circuitry includes an additional inductive element that is capacitively coupled to the annular resonance structure via an air gap to improve the quality factor of the resonant circuitry.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: November 27, 2018
    Assignee: NXP USA, INC.
    Inventor: Tiefeng Shi
  • Publication number: 20160150654
    Abstract: Systems and apparatus are provided for solid-state oscillators and related resonant circuitry. An exemplary oscillator system includes an amplifier having an amplifier input and an amplifier output and resonant circuitry coupled between the amplifier output and the amplifier input. In exemplary embodiments, the resonant circuitry includes an annular resonance structure that is substantially symmetrical and includes a pair of arcuate inductive elements. In accordance with one or more embodiments, the resonant circuitry includes an additional inductive element that is capacitively coupled to the annular resonance structure via an air gap to improve the quality factor of the resonant circuitry.
    Type: Application
    Filed: January 28, 2016
    Publication date: May 26, 2016
    Inventor: Tiefeng Shi
  • Patent number: 9288849
    Abstract: Systems and methods for translating an oscillating electrical signal from a first impedance to an input impedance of a load include an adaptor that further includes at least one coaxial portion and an antenna portion. The at least one coaxial portion has a first end and a second end, and is configured to translate the oscillating electrical signal to the input impedance of the load. The antenna portion is coupled to the second end of the at least one coaxial portion and is disposed within the load. The antenna portion is configured to radiate electromagnetic signals corresponding to the oscillating electrical signal into the load.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: March 15, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Tiefeng Shi, Jun Li
  • Patent number: 9270227
    Abstract: Systems and apparatus are provided for solid-state oscillators and related resonant circuitry. An exemplary oscillator system includes an amplifier having an amplifier input and an amplifier output and resonant circuitry coupled between the amplifier output and the amplifier input. In exemplary embodiments, the resonant circuitry includes an annular resonance structure that is substantially symmetrical and includes a pair of arcuate inductive elements. In accordance with one or more embodiments, the resonant circuitry includes an additional inductive element that is capacitively coupled to the annular resonance structure via an air gap to improve the quality factor of the resonant circuitry.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: February 23, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventor: Tiefeng Shi
  • Publication number: 20150156828
    Abstract: Systems and methods for translating an oscillating electrical signal from a first impedance to an input impedance of a load include an adaptor that further includes at least one coaxial portion and an antenna portion. The at least one coaxial portion has a first end and a second end, and is configured to translate the oscillating electrical signal to the input impedance of the load. The antenna portion is coupled to the second end of the at least one coaxial portion and is disposed within the load. The antenna portion is configured to radiate electromagnetic signals corresponding to the oscillating electrical signal into the load.
    Type: Application
    Filed: August 29, 2014
    Publication date: June 4, 2015
    Inventors: TIEFENG SHI, JUN LI