Patents by Inventor Tiefeng Shi
Tiefeng Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250118543Abstract: Methods, apparatuses and systems for detecting and managing arc events during a plasma chamber process include receiving impedance data measured during a plasma chamber process, analyzing the impedance data to determine if an arc event is occurring during the plasma chamber process, and if it is determined that an arc event is occurring, an action is taken to suppress an arc of the arc event. In some instances, a machine learning model that has been trained to recognize when an arc event is occurring from received measurement data is used to determine if an arc event is occurring.Type: ApplicationFiled: November 15, 2024Publication date: April 10, 2025Inventors: Tiefeng SHI, Gang FU, Keith A. MILLER
-
Patent number: 12176190Abstract: Methods, apparatuses and systems for detecting and managing arc events during a plasma chamber process include receiving impedance data measured during a plasma chamber process, analyzing the impedance data to determine if an arc event is occurring during the plasma chamber process, and if it is determined that an arc event is occurring, an action is taken to suppress an arc of the arc event. In some instances, a machine learning model that has been trained to recognize when an arc event is occurring from received measurement data is used to determine if an arc event is occurring.Type: GrantFiled: March 7, 2023Date of Patent: December 24, 2024Assignee: APPLIED MATERIALS, INC.Inventors: Tiefeng Shi, Gang Fu, Keith A. Miller
-
Publication number: 20240304429Abstract: Methods, apparatuses and systems for detecting and managing arc events during a plasma chamber process include receiving impedance data measured during a plasma chamber process, analyzing the impedance data to determine if an arc event is occurring during the plasma chamber process, and if it is determined that an arc event is occurring, an action is taken to suppress an arc of the arc event. In some instances, a machine learning model that has been trained to recognize when an arc event is occurring from received measurement data is used to determine if an arc event is occurring.Type: ApplicationFiled: March 7, 2023Publication date: September 12, 2024Inventors: Tiefeng SHI, Gang FU, Keith A. MILLER
-
Patent number: 12088115Abstract: High efficiency resonator coils for large gap resonant wireless power transfer (WPT), and a coil design methodology are disclosed. Resonator coils comprise a coil topology defined by coil parameters in which turn dimensions, such as trace widths and spacings of each turn, are configured to reduce or minimize a variance of the z component of magnetic field, over an area of a charging plane at a specified distance, or distance range, from the coil. A Tx resonator coil comprises a capacitor arrangement of tuning and network-matching capacitors for improved coil-to-coil efficiency and end-to-end WPT system performance, e.g. for applications such as through-wall WPT, in the range of tens of watts to at least hundreds of watts. Planar resonator coil topologies are compatible with fabrication using low cost PCB technology, e.g. with multi-layer metal, to reduce losses and improve thermal performance.Type: GrantFiled: October 25, 2023Date of Patent: September 10, 2024Assignee: GAN SYSTEMS INC.Inventors: Tiefeng Shi, Paul Wiener
-
Publication number: 20240186831Abstract: High efficiency resonator coils for large gap resonant wireless power transfer (WPT), and a coil design methodology are disclosed. Resonator coils comprise a coil topology defined by coil parameters in which turn dimensions, such as trace widths and spacings of each turn, are configured to reduce or minimize a variance of the z component of magnetic field, over an area of a charging plane at a specified distance, or distance range, from the coil. A Tx resonator coil comprises a capacitor arrangement of tuning and network-matching capacitors for improved coil-to-coil efficiency and end-to-end WPT system performance, e.g. for applications such as through-wall WPT, in the range of tens of watts to at least hundreds of watts. Planar resonator coil topologies are compatible with fabrication using low cost PCB technology, e.g. with multi-layer metal, to reduce losses and improve thermal performance.Type: ApplicationFiled: October 25, 2023Publication date: June 6, 2024Inventors: Tiefeng SHI, Paul WIENER
-
Publication number: 20240112886Abstract: Embodiments provided herein generally include apparatus, plasma processing systems and methods for dynamic impedance matching across multiple frequency bands of a power source. An example method includes amplifying a broadband signal, splitting the amplified broadband signal across a plurality of channel paths coupled to an impedance matching network, and adjusting at least one first impedance associated with the impedance matching network to achieve a second impedance within a threshold value based at least in part on feedback associated with the broadband signal. The impedance matching network includes a plurality of impedance matching circuits coupled to plasma excitation circuitry, and each of the impedance matching circuits is coupled to a different path of the plurality of channel paths and an output node.Type: ApplicationFiled: June 13, 2023Publication date: April 4, 2024Inventors: Tiefeng SHI, Gang FU, Keith A. MILLER
-
Patent number: 11929802Abstract: An unmanned aerial vehicle can be configured to adjust a beam direction, provide path information, act as a base station, act as a cluster head, include an improved directional antenna or array of directional antennas, communicate in a collaboration using belief propagation, receive communications from a serving station aiding in navigation or improved signal performance, or the like.Type: GrantFiled: November 27, 2019Date of Patent: March 12, 2024Assignee: Apple Inc.Inventors: Feng Xue, Mustafa Akdeniz, Seong-Youp John Suh, Shu-Ping Yeh, Eduardo Alban, Philippe Auzas, Jonathan Byrne, Mark Davis, David Gomez Gutierrez, Timo Huusari, Bradley Alan Jackson, Ranganadh Karella, Sreenivas Kasturi, Mengkun Ke, Ching-Yu Liao, Tiefeng Shi, Daniel Tong, Candy Yiu
-
Patent number: 11898236Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a processing chamber for processing a substrate comprises a sputtering target, a chamber wall at least partially defining an inner volume within the processing chamber and connected to ground, a power source comprising an RF power source, a process kit surrounding the sputtering target and a substrate support, an auto capacitor tuner (ACT) connected to ground and the sputtering target, and a controller configured to energize the cleaning gas disposed in the inner volume of the processing chamber to create the plasma and tune the sputtering target using the ACT to maintain a predetermined potential difference between the plasma in the inner volume and the process kit during the etch process to remove sputtering material from the process kit, wherein the predetermined potential difference is based on a resonant point of the ACT.Type: GrantFiled: October 20, 2021Date of Patent: February 13, 2024Assignee: APPLIED MATERIALS, INC.Inventors: Zhiyong Wang, Halbert Chong, John C. Forster, Irena H. Wysok, Tiefeng Shi, Gang Fu, Renu Whig, Keith A Miller, Sundarapandian Ramalinga Vijayalakshmi Reddy, Jianxin Lei, Rongjun Wang, Tza-Jing Gung, Kirankumar Neelasandra Savandaiah, Avinash Nayak, Lei Zhou
-
Patent number: 11676801Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a matching network for use with a plasma processing chamber comprises an input configured to connect to a power source, an output configured to connect to the plasma processing chamber, a V/I sensor connected between the input of the matching network and an output of the power source, a load capacitor connected in parallel with at least one capacitor connected in series with a load switch, a tuning capacitor connected in series with at least one capacitor connected in parallel with a tuning switch, and a multiple level pulsing phase/magnitude module connected to the V/I sensor and to a multiple level pulsing synchronization switch driver connected to each of the load switch and the tuning switch for activating at least one of the load switch and the tuning switch in response to a control signal, which is based on a V/I sensor measurement, received from the power source.Type: GrantFiled: May 28, 2021Date of Patent: June 13, 2023Assignee: APPLIED MATERIALS, INC.Inventors: Tiefeng Shi, Keith A. Miller, Gang Fu
-
Publication number: 20230122956Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a processing chamber for processing a substrate comprises a sputtering target, a chamber wall at least partially defining an inner volume within the processing chamber and connected to ground, a power source comprising an RF power source, a process kit surrounding the sputtering target and a substrate support, an auto capacitor tuner (ACT) connected to ground and the sputtering target, and a controller configured to energize the cleaning gas disposed in the inner volume of the processing chamber to create the plasma and tune the sputtering target using the ACT to maintain a predetermined potential difference between the plasma in the inner volume and the process kit during the etch process to remove sputtering material from the process kit, wherein the predetermined potential difference is based on a resonant point of the ACT.Type: ApplicationFiled: October 20, 2021Publication date: April 20, 2023Inventors: Zhiyong WANG, Halbert CHONG, John C. FORSTER, Irena H. WYSOK, Tiefeng SHI, Gang FU, Renu WHIG, Keith A. MILLER, Sundarapandian Ramalinga Vijayalakshmi REDDY, Jianxin LEI, Rongjun WANG, Tza-Jing GUNG, Kirankumar Neelasandra SAVANDAIAH, Avinash NAYAK, Lei ZHOU
-
Publication number: 20230075393Abstract: Apparatus, systems and methods for load-adaptive 3D wireless charging are disclosed. In a 3D charging system of an example embodiment, features comprise a 3D coil design that provides magnetic field distribution coverage for a 3D charging space, e.g. hemi-spherical space/volume; a push-pull class EF2 PA with EMI filter and transmitter circuitry that provides constant current to the 3D coil, with current direction, phase and timing control capability to adapt to load conditions; reactance shift detection circuitry comprising a voltage sensor, current sensor and phase detector and hardware for fast, real-time, computation of reactance and comparison to upper and lower limits for load-adaptive reactance tuning and for auto-protection; and a switchable tuning capacitor network arrangement of shunt and series capacitors configured for auto-tuning of input impedance, e.g. in response to a X detection trigger signal, which enables both coarse-tuning and uniform fine-tuning steps over an extended reactance range.Type: ApplicationFiled: February 5, 2021Publication date: March 9, 2023Inventors: Tiefeng SHI, Paul WIENER
-
Publication number: 20220384149Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a matching network for use with a plasma processing chamber comprises an input configured to connect to a power source, an output configured to connect to the plasma processing chamber, a V/I sensor connected between the input of the matching network and an output of the power source, a load capacitor connected in parallel with at least one capacitor connected in series with a load switch, a tuning capacitor connected in series with at least one capacitor connected in parallel with a tuning switch, and a multiple level pulsing phase/magnitude module connected to the V/I sensor and to a multiple level pulsing synchronization switch driver connected to each of the load switch and the tuning switch for activating at least one of the load switch and the tuning switch in response to a control signal, which is based on a V/I sensor measurement, received from the power source.Type: ApplicationFiled: May 28, 2021Publication date: December 1, 2022Inventors: Tiefeng SHI, Keith A. MILLER, Gang FU
-
Publication number: 20220247219Abstract: A wireless power transfer (WPT) system is provided to drive multiple resonator coils utilizing one power amplifier. The WPT system may include a power amplifier, a differential 1:N power divider, impedance inversion circuits and multiple resonator coils. The WPT system may further include auto-tuning circuits with sensors that facilitate the efficient driving of the multiple resonator coils. As well, there is provided various 3D shaped coil topologies that are comprised of two or more separate coils. The 3D coil topology designs each provide a particular 3D magnetic field for wireless charging.Type: ApplicationFiled: January 20, 2022Publication date: August 4, 2022Inventors: Tiefeng SHI, Paul WIENER
-
Publication number: 20220069876Abstract: An unmanned aerial vehicle can be configured to adjust a beam direction, provide path information, act as a base station, act as a cluster head, include an improved directional antenna or array of directional antennas, communicate in a collaboration using belief propagation, receive communications from a serving station aiding in navigation or improved signal performance, or the like.Type: ApplicationFiled: November 27, 2019Publication date: March 3, 2022Inventors: Feng XUE, Mustafa AKDENIZ, Seong-Youp John SUH, Shu-ping YEH, Eduardo ALBAN, Philippe AUZAS, Jonathan BYRNE, Mark DAVIS, David GOMEZ GUTIERREZ, Timo HUUSARI, Bradley Alan JACKSON, Ranganadh KARELLA, Sreenivas KASTURI, Mengkun KE, Ching-Yu LIAO, Tiefeng SHI, Daniel TONG, Candy YIU
-
Publication number: 20210184500Abstract: High efficiency resonator coils for large gap resonant wireless power transfer (WPT), and a coil design methodology are disclosed. Resonator coils comprise a coil topology defined by coil parameters in which turn dimensions, such as trace widths and spacings of each turn, are configured to reduce or minimize a variance of the z component of magnetic field, over an area of a charging plane at a specified distance, or distance range, from the coil. A Tx resonator coil comprises a capacitor arrangement of tuning and network-matching capacitors for improved coil-to-coil efficiency and end-to-end WPT system performance, e.g. for applications such as through-wall WPT, in the range of tens of watts to at least hundreds of watts. Planar resonator coil topologies are compatible with fabrication using low cost PCB technology, e.g. with multi-layer metal, to reduce losses and improve thermal performance.Type: ApplicationFiled: November 10, 2020Publication date: June 17, 2021Inventors: Tiefeng SHI, Paul WIENER
-
Patent number: 10143091Abstract: Systems and apparatus are provided for solid-state oscillators and related resonant circuitry. An exemplary oscillator system includes an amplifier having an amplifier input and an amplifier output and resonant circuitry coupled between the amplifier output and the amplifier input. In exemplary embodiments, the resonant circuitry includes an annular resonance structure that is substantially symmetrical and includes a pair of arcuate inductive elements. In accordance with one or more embodiments, the resonant circuitry includes an additional inductive element that is capacitively coupled to the annular resonance structure via an air gap to improve the quality factor of the resonant circuitry.Type: GrantFiled: January 28, 2016Date of Patent: November 27, 2018Assignee: NXP USA, INC.Inventor: Tiefeng Shi
-
Publication number: 20160150654Abstract: Systems and apparatus are provided for solid-state oscillators and related resonant circuitry. An exemplary oscillator system includes an amplifier having an amplifier input and an amplifier output and resonant circuitry coupled between the amplifier output and the amplifier input. In exemplary embodiments, the resonant circuitry includes an annular resonance structure that is substantially symmetrical and includes a pair of arcuate inductive elements. In accordance with one or more embodiments, the resonant circuitry includes an additional inductive element that is capacitively coupled to the annular resonance structure via an air gap to improve the quality factor of the resonant circuitry.Type: ApplicationFiled: January 28, 2016Publication date: May 26, 2016Inventor: Tiefeng Shi
-
Patent number: 9288849Abstract: Systems and methods for translating an oscillating electrical signal from a first impedance to an input impedance of a load include an adaptor that further includes at least one coaxial portion and an antenna portion. The at least one coaxial portion has a first end and a second end, and is configured to translate the oscillating electrical signal to the input impedance of the load. The antenna portion is coupled to the second end of the at least one coaxial portion and is disposed within the load. The antenna portion is configured to radiate electromagnetic signals corresponding to the oscillating electrical signal into the load.Type: GrantFiled: August 29, 2014Date of Patent: March 15, 2016Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Tiefeng Shi, Jun Li
-
Patent number: 9270227Abstract: Systems and apparatus are provided for solid-state oscillators and related resonant circuitry. An exemplary oscillator system includes an amplifier having an amplifier input and an amplifier output and resonant circuitry coupled between the amplifier output and the amplifier input. In exemplary embodiments, the resonant circuitry includes an annular resonance structure that is substantially symmetrical and includes a pair of arcuate inductive elements. In accordance with one or more embodiments, the resonant circuitry includes an additional inductive element that is capacitively coupled to the annular resonance structure via an air gap to improve the quality factor of the resonant circuitry.Type: GrantFiled: July 29, 2011Date of Patent: February 23, 2016Assignee: FREESCALE SEMICONDUCTOR, INC.Inventor: Tiefeng Shi
-
Publication number: 20150156828Abstract: Systems and methods for translating an oscillating electrical signal from a first impedance to an input impedance of a load include an adaptor that further includes at least one coaxial portion and an antenna portion. The at least one coaxial portion has a first end and a second end, and is configured to translate the oscillating electrical signal to the input impedance of the load. The antenna portion is coupled to the second end of the at least one coaxial portion and is disposed within the load. The antenna portion is configured to radiate electromagnetic signals corresponding to the oscillating electrical signal into the load.Type: ApplicationFiled: August 29, 2014Publication date: June 4, 2015Inventors: TIEFENG SHI, JUN LI