Patents by Inventor Tien-Jen J. Cheng

Tien-Jen J. Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9017487
    Abstract: A method for cleaning a deposition chamber includes forming a deposited layer over an interior surface of the deposition chamber, wherein the deposited layer has a deposited layer stress and a deposited layer modulus; forming a cleaning layer over the deposited layer, wherein a material comprising the cleaning layer is selected such that the cleaning layer adheres to the deposited layer, and has a cleaning layer stress and a cleaning layer modulus, wherein the cleaning layer stress is higher than the deposited layer stress, and wherein the cleaning layer modulus is higher than the deposited layer modulus; and removing the deposited layer and the cleaning layer from the interior of the deposition chamber.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: April 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Tien-Jen J. Cheng, Zhengwen Li, Keith Kwong Hon Wong
  • Patent number: 8384219
    Abstract: In a BEOL process, UV radiation is used in a curing process of ultra low-k (ULK) dielectrics. This radiation penetrates through the ULK material and reaches the cap film underneath it. The interaction between the UV light and the film leads to a change the properties of the cap film. Of particular concern is the change in the stress state of the cap from compressive to tensile stress. This leads to a weaker dielectric-cap interface and mechanical failure of the ULK film. A layer of nanoparticles is inserted between the cap and the ULK film. The nanoparticles absorb the UV light before it can damage the cap film, thus maintaining the mechanical integrity of the ULK dielectric.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: February 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Junjing Bao, Tien-Jen J. Cheng, Naftali E. Lustig
  • Publication number: 20120146224
    Abstract: In a BEOL process, UV radiation is used in a curing process of ultra low-k (ULK) dielectrics. This radiation penetrates through the ULK material and reaches the cap film underneath it. The interaction between the UV light and the film leads to a change the properties of the cap film. Of particular concern is the change in the stress state of the cap from compressive to tensile stress. This leads to a weaker dielectric-cap interface and mechanical failure of the ULK film. A layer of nanoparticles is inserted between the cap and the ULK film. The nanoparticles absorb the UV light before it can damage the cap film, thus maintaining the mechanical integrity of the ULK dielectric.
    Type: Application
    Filed: January 31, 2012
    Publication date: June 14, 2012
    Applicant: International Business Machines Corporation
    Inventors: Junjing Bao, Tien-Jen J. Cheng, Naftali E. Lustig
  • Publication number: 20120068315
    Abstract: In a BEOL process, UV radiation is used in a curing process of ultra low-k (ULK) dielectrics. This radiation penetrates through the ULK material and reaches the cap film underneath it. The interaction between the UV light and the film leads to a change the properties of the cap film. Of particular concern is the change in the stress state of the cap from compressive to tensile stress. This leads to a weaker dielectric-cap interface and mechanical failure of the ULK film. A layer of nanoparticles is inserted between the cap and the ULK film. The nanoparticles absorb the UV light before it can damage the cap film, thus maintaining the mechanical integrity of the ULK dielectric.
    Type: Application
    Filed: September 20, 2010
    Publication date: March 22, 2012
    Applicant: International Business Machines Corporation
    Inventors: Junjing Bao, Tien-Jen J. Cheng, Naftali E. Lustig
  • Patent number: 8129269
    Abstract: In a BEOL process, UV radiation is used in a curing process of ultra low-k (ULK) dielectrics. This radiation penetrates through the ULK material and reaches the cap film underneath it. The interaction between the UV light and the film leads to a change the properties of the cap film. Of particular concern is the change in the stress state of the cap from compressive to tensile stress. This leads to a weaker dielectric-cap interface and mechanical failure of the ULK film. A layer of nanoparticles is inserted between the cap and the ULK film. The nanoparticles absorb the UV light before it can damage the cap film, thus maintaining the mechanical integrity of the ULK dielectric.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: March 6, 2012
    Assignee: International Business Machines Corporation
    Inventors: Junjing Bao, Tien-Jen J. Cheng, Naftali Lustig
  • Patent number: 6992389
    Abstract: A method of creating a multi-layered barrier for use in an interconnect, a barrier for an interconnect, and an interconnect including the barrier are disclosed. The method includes creating the multi-layered barrier in a recess of the device terminal by use of a single electroplating chemistry to enhance protection against voiding and de-lamination due to the diffusion of copper, whether by self-diffusion or electro-migration. The barrier includes at least a first layer of nickel-rich material and a second layer of copper-rich material. The barrier enables use of higher current densities for advanced complementary metal-oxide semiconductors (CMOS) designs, and extends the reliability of current CMOS designs regardless of solder selection. Moreover, this technology is easily adapted to current methods of fabricating electroplated interconnects such as C4s.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: January 31, 2006
    Assignee: International Business Machines Corporation
    Inventors: Panayotis C. Andricacos, Tien-Jen J. Cheng, Emanuel I. Cooper, David E. Eichstadt, Jonathan H. Griffith, Randolph F. Knarr, Roger A. Quon, Erik J. Roggeman