Patents by Inventor Tien-Min Lin

Tien-Min Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9618161
    Abstract: A lamp includes a substrate having a center region and a peripheral region, a first subset of light-emitting devices disposed on the center region, and a second subset of light-emitting devices disposed on the peripheral region. A temperature difference between the center region and the peripheral region is greater than 10 degrees.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: April 11, 2017
    Assignee: EPISTAR CORPORATION
    Inventors: Sheng-Shin Guo, Chih-Hsuan Sun, Tien-Min Lin, Wei-Yu Yeh
  • Patent number: 9343505
    Abstract: An optical emitter is fabricated by bonding a Light-Emitting Diode (LED) die to a package wafer, electrically connecting the LED die and the package wafer, forming a phosphor coating over the LED die on the package wafer, molding a lens over the LED die on the package wafer, molding a reflector on the package wafer, and dicing the wafer into at least one optical emitter.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: May 17, 2016
    Assignee: EPISTAR CORPORATION
    Inventors: Hao-Wei Ku, Chung Yu Wang, Yu-Sheng Tang, Hsin-Hung Chen, Hao-Yu Yang, Ching-Yi Chen, Hsiao-Wen Lee, Chi Xiang Tseng, Sheng-Shin Guo, Tien-Min Lin, Shang-Yu Tsai
  • Patent number: 9246068
    Abstract: The present disclosure involves a method. The method includes providing a substrate having a layer disposed thereon. A plurality of light-emitting devices is attached to the layer. A gel is applied over the substrate. The gel covers the plurality of light-emitting devices. The gel is shaped into a plurality of lenses. The lenses each cover a respective one of the light-emitting devices. The light-emitting devices are separated from one another. The substrate and the layer are removed.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: January 26, 2016
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Min Lin
  • Patent number: 9214610
    Abstract: A lighting apparatus includes a first doped semiconductor layer, a light-emitting layer disposed over the first doped semiconductor layer, a second doped semiconductor layer disposed over the light-emitting layer, a first conductive terminal, a second conductive terminal, and a photo-conversion layer. The second doped semiconductor layer has a different type of conductivity than the first doped semiconductor layer. The first conductive terminal and the second conductive terminal each are disposed below the first doped semiconductor layer. The photo-conversion layer is disposed over the second doped semiconductor layer and on side surfaces of the first and second doped semiconductor layers and the light-emitting layer. A bottommost surface of the photo-conversion layer is located closer to the second doped semiconductor layer than bottom surfaces of the first and second conductive terminals.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: December 15, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Min Lin
  • Publication number: 20150308629
    Abstract: A lamp includes a substrate having a center region and a peripheral region, a first subset of light-emitting devices disposed on the center region, and a second subset of light-emitting devices disposed on the peripheral region. A temperature difference between the center region and the peripheral region is greater than 10 degrees.
    Type: Application
    Filed: July 6, 2015
    Publication date: October 29, 2015
    Inventors: Sheng-Shin Guo, Chih-Hsuan Sun, Tien-Min Lin, Wei-Yu Yeh
  • Patent number: 9093618
    Abstract: The present disclosure involves lighting apparatus. The lighting apparatus includes a light-emitting device. The light-emitting device includes a first doped semiconductor layer. A light-emitting layer is disposed over the first doped semiconductor layer. A second doped semiconductor layer is disposed over the light-emitting layer. The second doped semiconductor layer has a different type of conductivity than the first doped semiconductor layer. A photo-conversion layer is coated around the light-emitting device. A lens houses the light-emitting device and the photo-conversion layer within. The lens includes a first sub-layer and a second sub-layer. The first and second sub-layers have different characteristics.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: July 28, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Min Lin
  • Patent number: 9082942
    Abstract: The present disclosure involves a method of packaging light-emitting diodes (LEDs). According to the method, a plurality of LEDs is provided over an adhesive tape. The adhesive tape is disposed on a substrate. In some embodiments, the substrate may be a glass substrate, a silicon substrate, a ceramic substrate, and a gallium nitride substrate. A phosphor layer is coated over the plurality of LEDs. The phosphor layer is then cured. The tape and the substrate are removed after the curing of the phosphor layer. A replacement tape is then attached to the plurality of LEDs. A dicing process is then performed to the plurality of LEDs after the substrate has been removed. The removed substrate may then be reused for a future LED packaging process.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: July 14, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Min Lin
  • Patent number: 9059509
    Abstract: A decoupling circuit for enhancing isolation of two monopole antennas is disclosed. The two monopole antennas substantially symmetrically stand on a bottom, and a gap is formed between the two monopole antennas. The decoupling circuit includes a grounding element located on the bottom and electrically connected to a ground, a connection bar substantially perpendicular to the bottom, including a first terminal electrically connected to the grounding element, a second terminal extending to the gap, a first branch extending from the second terminal of the connection bar to a first monopole antenna of the two monopole antennas, and a second branch extending from the second terminal of the connection bar to a second monopole antenna of the two monopole antennas.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: June 16, 2015
    Assignee: Wistron NeWeb Corporation
    Inventors: I-Shan Chen, Tien-Min Lin, Cheng-Hsiung Hsu, Yi-Chieh Wang
  • Patent number: 9035334
    Abstract: The present disclosure involves a method of packaging a light-emitting diode (LED). According to the method, a group of metal pads and a group of LEDs are provided. The group of LEDs is attached to the group of metal pads, for example through a bonding process. After the LEDs are attached to the metal pads, each LED is spaced apart from adjacent LEDs. Also according to the method, a phosphor film is coated around the group of LEDs collectively. The phosphor film is coated on top and side surfaces of each LED and between adjacent LEDs. A dicing process is then performed to slice through portions of the phosphor film located between adjacent LEDs. The dicing process divides the group of LEDs into a plurality of individual phosphor-coated LEDs.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: May 19, 2015
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Min Lin
  • Patent number: 8889439
    Abstract: The present disclosure involves a method of packaging light-emitting diodes (LEDs). According to the method, a plurality of LEDs is provided over an adhesive tape. The adhesive tape is disposed on a substrate. In some embodiments, the substrate may be a glass substrate, a silicon substrate, a ceramic substrate, and a gallium nitride substrate. A phosphor layer is coated over the plurality of LEDs. The phosphor layer is then cured. The tape and the substrate are removed after the curing of the phosphor layer. A replacement tape is then attached to the plurality of LEDs. A dicing process is then performed to the plurality of LEDs after the substrate has been removed. The removed substrate may then be reused for a future LED packaging process.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: November 18, 2014
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Min Lin
  • Publication number: 20140291611
    Abstract: The present disclosure involves lighting apparatus. The lighting apparatus includes a first doped semiconductor layer. A light-emitting layer is disposed over the first doped semiconductor layer. A second doped semiconductor layer is disposed over the light-emitting layer. The second doped semiconductor layer has a different type of conductivity than the first doped semiconductor layer. A first conductive terminal and a second conductive terminal are each disposed below the first doped semiconductor layer. A photo-conversion layer is disposed over the second doped semiconductor layer and on side surfaces of the first and second doped semiconductor layers and the light-emitting layer. A bottommost surface of the photo-conversion layer is located closer to the second doped semiconductor layer than bottom surfaces of the first and second conductive terminals.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Min Lin
  • Publication number: 20140295593
    Abstract: The present disclosure involves a method. The method includes providing a substrate having a layer disposed thereon. A plurality of light-emitting devices is attached to the layer. A gel is applied over the substrate. The gel covers the plurality of light-emitting devices. The gel is shaped into a plurality of lenses. The lenses each cover a respective one of the light-emitting devices. The light-emitting devices are separated from one another. The substrate and the layer are removed.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Min Lin
  • Publication number: 20140291610
    Abstract: The present disclosure involves lighting apparatus. The lighting apparatus includes a light-emitting device. The light-emitting device includes a first doped semiconductor layer. A light-emitting layer is disposed over the first doped semiconductor layer. A second doped semiconductor layer is disposed over the light-emitting layer. The second doped semiconductor layer has a different type of conductivity than the first doped semiconductor layer. A photo-conversion layer is coated around the light-emitting device. A lens houses the light-emitting device and the photo-conversion layer within. The lens includes a first sub-layer and a second sub-layer. The first and second sub-layers have different characteristics.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Min Lin
  • Publication number: 20140151725
    Abstract: The present disclosure involves a method of packaging a light-emitting diode (LED). According to the method, a group of metal pads and a group of LEDs are provided. The group of LEDs is attached to the group of metal pads, for example through a bonding process. After the LEDs are attached to the metal pads, each LED is spaced apart from adjacent LEDs. Also according to the method, a phosphor film is coated around the group of LEDs collectively. The phosphor film is coated on top and side surfaces of each LED and between adjacent LEDs. A dicing process is then performed to slice through portions of the phosphor film located between adjacent LEDs. The dicing process divides the group of LEDs into a plurality of individual phosphor-coated LEDs.
    Type: Application
    Filed: February 7, 2014
    Publication date: June 5, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Min Lin
  • Publication number: 20140103372
    Abstract: The present disclosure involves a method of packaging light-emitting diodes (LEDs). According to the method, a plurality of LEDs is provided over an adhesive tape. The adhesive tape is disposed on a substrate. In some embodiments, the substrate may be a glass substrate, a silicon substrate, a ceramic substrate, and a gallium nitride substrate. A phosphor layer is coated over the plurality of LEDs. The phosphor layer is then cured. The tape and the substrate are removed after the curing of the phosphor layer. A replacement tape is then attached to the plurality of LEDs. A dicing process is then performed to the plurality of LEDs after the substrate has been removed. The removed substrate may then be reused for a future LED packaging process.
    Type: Application
    Filed: December 26, 2013
    Publication date: April 17, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Min Lin
  • Patent number: 8686907
    Abstract: An antenna device is provided and includes a bottom, two monopole antennas, and a cover assembled with the bottom. A projection plane is defined perpendicular to the bottom. The two monopole antennas substantially symmetrically protrude from the bottom, and a gap is formed between the two monopole antennas. Projections of the two monopole antennas on the projection plane intersect with each other. Each of the two monopole antennas includes a first frequency receiving portion adjacent to the bottom, a second frequency receiving portion, and a connection portion located between the first frequency receiving portion and the second frequency receiving portion. A slot is formed through the connection portion to adjust a received frequency of the first or second frequency receiving portion. An accommodating space is formed between the cover and the bottom to accommodate the two monopole antennas.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: April 1, 2014
    Assignee: Wistron Neweb Corporation
    Inventors: Cheng-Geng Jan, I-Shan Chen, Chia-Hong Lin, Tien-Min Lin, Yi-Cheih Wang, Cheng-Hsiung Hsu
  • Publication number: 20140054619
    Abstract: The present disclosure involves a method of packaging light-emitting diodes (LEDs). According to the method, a plurality of LEDs is provided over an adhesive tape. The adhesive tape is disposed on a substrate. In some embodiments, the substrate may be a glass substrate, a silicon substrate, a ceramic substrate, and a gallium nitride substrate. A phosphor layer is coated over the plurality of LEDs. The phosphor layer is then cured. The tape and the substrate are removed after the curing of the phosphor layer. A replacement tape is then attached to the plurality of LEDs. A dicing process is then performed to the plurality of LEDs after the substrate has been removed. The removed substrate may then be reused for a future LED packaging process.
    Type: Application
    Filed: March 7, 2013
    Publication date: February 27, 2014
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Min Lin
  • Publication number: 20130335286
    Abstract: A decoupling circuit for enhancing isolation of two monopole antennas is disclosed. The two monopole antennas substantially symmetrically stand on a bottom, and a gap is formed between the two monopole antennas. The decoupling circuit includes a grounding element located on the bottom and electrically connected to a ground, a connection bar substantially perpendicular to the bottom, including a first terminal electrically connected to the grounding element, a second terminal extending to the gap, a first branch extending from the second terminal of the connection bar to a first monopole antenna of the two monopole antennas, and a second branch extending from the second terminal of the connection bar to a second monopole antenna of the two monopole antennas.
    Type: Application
    Filed: September 5, 2012
    Publication date: December 19, 2013
    Inventors: I-Shan Chen, Tien-Min Lin, Cheng-Hsiung Hsu, Yi-Chieh Wang
  • Publication number: 20130154890
    Abstract: An antenna device is provided and includes a bottom, two monopole antennas, and a cover assembled with the bottom. A projection plane is defined perpendicular to the bottom. The two monopole antennas substantially symmetrically protrude from the bottom, and a gap is formed between the two monopole antennas. Projections of the two monopole antennas on the projection plane intersect with each other. Each of the two monopole antennas includes a first frequency receiving portion adjacent to the bottom, a second frequency receiving portion, and a connection portion located between the first frequency receiving portion and the second frequency receiving portion. A slot is formed through the connection portion to adjust a received frequency of the first or second frequency receiving portion. An accommodating space is formed between the cover and the bottom to accommodate the two monopole antennas.
    Type: Application
    Filed: April 5, 2012
    Publication date: June 20, 2013
    Inventors: Cheng-Geng JAN, I-Shan Chen, Chia-Hong Lin, Tien-Min Lin, Yi-Cheih Wang, Cheng-Hsiung Hsu