Patents by Inventor Tien-Wei Chiang

Tien-Wei Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240096818
    Abstract: Devices and method for forming a shielding assembly including a first chip package structure sensitive to magnetic interference (MI), a second chip package structure sensitive to electromagnetic interference (EMI), and a shield surrounding sidewalls and top surfaces of the first chip package structure and the second chip package structure, in which the shield is a magnetic shielding material. In some embodiments, the shield may include silicon steel, in some embodiments, the shield may include Mu-metal. The silicon-steel-based or Mu-metal-based shield may provide both EMI and MI protection to multiple chip package structures with various susceptibilities to EMI and MI.
    Type: Application
    Filed: April 20, 2023
    Publication date: March 21, 2024
    Inventors: Harry-Hak-Lay Chuang, Yuan-Jen Lee, Kuo-An Liu, Ching-Huang Wang, C.T. Kuo, Tien-Wei Chiang
  • Patent number: 11930645
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a substrate, a transistor region, a first and a second contact plug, a first metal via, a magnetic tunneling junction (MTJ) structure, and a metal interconnect. The transistor region includes a gate over the substrate, and a first and a second doped regions at least partially in the substrate. The first and the second contact plug are over the transistor region. The first and the second contact plug include a coplanar upper surface. The first metal via and the MTJ structure are over the first and the second contact plug, respectively. The first metal via is leveled with the MTJ structure. The metal interconnect is over the first metal via and the MTJ structure, and the metal interconnect includes at least two second metal vias in contact with the first metal via and the MTJ structure, respectively.
    Type: Grant
    Filed: March 5, 2023
    Date of Patent: March 12, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Alexander Kalnitsky, Harry-Hak-Lay Chuang, Sheng-Haung Huang, Tien-Wei Chiang
  • Publication number: 20240057344
    Abstract: A semiconductor device includes a bottom electrode via, a top electrode via over the bottom electrode via, a memory cell between the bottom electrode via and the top electrode via, a first dielectric layer over the memory cell, and a second dielectric layer over the first dielectric layer, and a via structure separated from the memory cell. A height of the via structure is substantially equal to a sum of a height of the bottom electrode via, a height of the memory cell, and a height of the top electrode via. The first dielectric layer partially surrounds a first portion of the via structure, and the second dielectric layer partially surrounds a second portion of the via structure. A height of the second portion of the via structure is greater than a height of the first portion of the via structure.
    Type: Application
    Filed: October 24, 2023
    Publication date: February 15, 2024
    Inventors: HARRY-HAK-LAY CHUANG, WU-CHANG TSAI, TIEN-WEI CHIANG
  • Patent number: 11832452
    Abstract: A semiconductor device includes a first dielectric layer, a second dielectric layer and a memory device. The second dielectric layer includes a first layer and a second layer. The memory device includes a first conductive structure under the first dielectric layer, a second conductive structure over the second dielectric layer, and a memory cell between the first and the second dielectric layers. The memory cell includes a bottom electrode via, a bottom electrode over the bottom electrode via, a top electrode over the bottom electrode, a top electrode via over the top electrode, and a MTJ between the top electrode and the bottom electrode. The second layer of the second dielectric layer surrounds sidewalls of the top electrode via entirely. The first layer of the second dielectric layer surrounds sidewalls of the bottom electrode entirely, sidewalls of the MTJ entirely, and sidewalls of the top electrode entirely.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: November 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Harry-Hak-Lay Chuang, Wu-Chang Tsai, Tien-Wei Chiang
  • Publication number: 20230371277
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a plurality of doped regions located in a substrate; a first dielectric layer located on the substrate; a plurality of first contacts and second contacts located in the first dielectric layer and connected to the plurality of doped regions; a second dielectric layer located on the first dielectric layer; a memory element located in the second dielectric layer, the memory element being electrically connected to the second contact; and a plurality of conductive interconnects located in the second dielectric layer. The conductive interconnects being electrically connected to the plurality of first contacts, and a top surface of the conductive interconnects being at a same level as a top surface of the memory element. A method of fabricating a semiconductor device, and a semiconductor structure having a semiconductor device are also provided.
    Type: Application
    Filed: July 11, 2023
    Publication date: November 16, 2023
    Inventors: ALEXANDER KALNITSKY, HARRY-HAK-LAY CHUANG, SHENG-HAUNG HUANG, TIEN-WEI CHIANG
  • Publication number: 20230361050
    Abstract: A package structure includes a mounting pad having a mounting surface; a semiconductor chip having a magnetic device, a first magnetic field shielding, and a molding. The semiconductor chip comprises a first surface perpendicular to a thickness direction of the semiconductor chip, a second surface opposite to the first surface, wherein the second surface is attached to the mounting surface of the mounting pad, and a third surface connecting the first surface and the second surface. The first magnetic field shielding including a plurality of segments laterally at least partially surrounding the semiconductor chip, wherein a bottom surface of the first magnetic field shielding is attached to the mounting surface of the mounting pad, wherein the mounting surface comprises first portion free from overlapping with the first magnetic field shielding from a top view perspective. The molding surrounding the mounting pad and in direct contact with the mounting surface.
    Type: Application
    Filed: July 18, 2023
    Publication date: November 9, 2023
    Inventors: HARRY-HAK-LAY CHUANG, CHIA-HSIANG CHEN, MENG-CHUN SHIH, CHING-HUANG WANG, TIEN-WEI CHIANG
  • Publication number: 20230333157
    Abstract: In some embodiments, a semiconductor wafer testing system is provided. The semiconductor wafer testing system includes a semiconductor wafer prober having one or more conductive probes, where the semiconductor wafer prober is configured to position the one or more conductive probes on an integrated chip (IC) that is disposed on a semiconductor wafer. The semiconductor wafer testing system also includes a ferromagnetic wafer chuck, where the ferromagnetic wafer chuck is configured to hold the semiconductor wafer while the wafer prober positions the one or more conductive probes on the IC. An upper magnet is disposed over the ferromagnetic wafer chuck, where the upper magnet is configured to generate an external magnetic field between the upper magnet and the ferromagnetic wafer chuck, and where the ferromagnetic wafer chuck amplifies the external magnetic field such that the external magnetic field passes through the IC with an amplified magnetic field strength.
    Type: Application
    Filed: June 20, 2023
    Publication date: October 19, 2023
    Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang
  • Publication number: 20230317629
    Abstract: In some embodiments, the present application provides an integrated chip. The integrated chip includes a chip comprising a semiconductor device. A shielding structure abuts the chip. The shielding structure comprises a first horizontal region adjacent to a first horizontal surface of the chip. The first horizontal region comprises a first multilayer structure comprising a first dielectric layer and two or more metal layers. The first dielectric layer is disposed between the two or more metal layers.
    Type: Application
    Filed: June 9, 2023
    Publication date: October 5, 2023
    Inventors: Harry-Hak-Lay Chuang, Tien-Wei Chiang, Kuo-An Liu, Chia-Hsiang Chen
  • Patent number: 11749617
    Abstract: The present disclosure provides a package structure, including a mounting pad having a mounting surface, a semiconductor chip disposed on the mounting surface of the mounting pad, wherein the semiconductor chip includes a first surface, a second surface opposite to the first surface and facing the mounting surface, and a third surface connecting the first surface and the second surface, a first magnetic field shielding, including a first portion proximal to the third surface of the semiconductor chip, wherein the first portion has a first height calculated from the mounting surface to a top surface, and a second portion distal to the semiconductor chip, has a second height calculated from the mounting surface to a position at a surface facing away from the mounting surface, wherein the second height is less than the first height, wherein the second portion has an inclined sidewall.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: September 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Harry-Hak-Lay Chuang, Chia-Hsiang Chen, Meng-Chun Shih, Ching-Huang Wang, Tien-Wei Chiang
  • Patent number: 11726747
    Abstract: In some embodiments, a method for generating a random bit is provided. The method includes generating a first random bit by providing a random number generator (RNG) signal to a magnetoresistive random-access memory (MRAM) cell. The RNG signal has a probability of about 0.5 to switch the resistive state of the MRAM cell from a first resistive state corresponding to a first data state to a second resistive state corresponding to a second data sate. The first random bit is then read from the MRAM cell.
    Type: Grant
    Filed: December 9, 2022
    Date of Patent: August 15, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Chih-Hui Weng, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang, Chia-Hsiang Chen
  • Patent number: 11719742
    Abstract: In some embodiments, a semiconductor wafer testing system is provided. The semiconductor wafer testing system includes a semiconductor wafer prober having one or more conductive probes, where the semiconductor wafer prober is configured to position the one or more conductive probes on an integrated chip (IC) that is disposed on a semiconductor wafer. The semiconductor wafer testing system also includes a ferromagnetic wafer chuck, where the ferromagnetic wafer chuck is configured to hold the semiconductor wafer while the wafer prober positions the one or more conductive probes on the IC. An upper magnet is disposed over the ferromagnetic wafer chuck, where the upper magnet is configured to generate an external magnetic field between the upper magnet and the ferromagnetic wafer chuck, and where the ferromagnetic wafer chuck amplifies the external magnetic field such that the external magnetic field passes through the IC with an amplified magnetic field strength.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: August 8, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang
  • Patent number: 11715702
    Abstract: In some embodiments, the present application provides a method for manufacture a memory device. The method includes forming a multilayer stack including a first magnetic layer and a first dielectric layer and forming another magnetic layer. The multilayer stack and the another magnetic layer are tailored to meet dimensions of a package structure. The package structure includes a chip having a memory cell and an insulating material enveloping the chip, where an outer surface of the package structure comprises the insulating material. The tailored multilayer stack and the tailored another magnetic layer are attached to the outer surface of the package structure.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: August 1, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Tien-Wei Chiang, Kuo-An Liu, Chia-Hsiang Chen
  • Publication number: 20230225136
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a substrate, a transistor region, a first and a second contact plug, a first metal via, a magnetic tunneling junction (MTJ) structure, and a metal interconnect. The transistor region includes a gate over the substrate, and a first and a second doped regions at least partially in the substrate. The first and the second contact plug are over the transistor region. The first and the second contact plug include a coplanar upper surface. The first metal via and the MTJ structure are over the first and the second contact plug, respectively. The first metal via is leveled with the MTJ structure. The metal interconnect is over the first metal via and the MTJ structure, and the metal interconnect includes at least two second metal vias in contact with the first metal via and the MTJ structure, respectively.
    Type: Application
    Filed: March 5, 2023
    Publication date: July 13, 2023
    Inventors: ALEXANDER KALNITSKY, HARRY-HAK-LAY CHUANG, SHENG-HAUNG HUANG, TIEN-WEI CHIANG
  • Publication number: 20230207045
    Abstract: A magnetoresistive random access memory (MRAM) device is provided. The MRAM device includes a main magnetic tunnel junction (MTJ) array comprising a plurality of memory cells configured to store memory data and a reference MTJ array comprising a plurality of reference cells having MTJ structures. The MRAM device further includes a controller operatively associated with the main MTJ array and the reference MTJ array. The controller is configured to receive a gross resistance of the reference MTJ array being related to a strength of an external magnetic field, determine whether the external magnetic field is fatal based on the received gross resistance of the reference MTJ array and a pre-determined threshold, and provide notification indicating that the memory data stored in the main MTJ array is untrustworthy if it is determined that the external magnetic field around the MRAM device is fatal.
    Type: Application
    Filed: April 20, 2022
    Publication date: June 29, 2023
    Inventors: Harry-Hak-Lay Chuang, Yuan-Jen Lee, Tien-Wei Chiang, Yi-Chun Shih
  • Patent number: 11653572
    Abstract: Some embodiments relate to a magnetoresistive random-access memory (MRAM) cell. The cell includes a bottom electrode having a central bottom electrode portion surrounded by a peripheral bottom electrode portion. Step regions of the conductive bottom electrode couple the central and peripheral bottom electrode portions to one another such that an upper surface of the central portion is recessed relative to an upper surface of the peripheral portion. A magnetic tunneling junction (MTJ) has MTJ outer sidewalls which are disposed over the bottom central electrode portion and which are arranged between the step regions. A top electrode is disposed over an upper surface of the MTJ. Other devices and methods are also disclosed.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: May 16, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Hung Cho Wang, Tien-Wei Chiang, Wen-Chun You
  • Publication number: 20230115281
    Abstract: In some embodiments, a method for generating a random bit is provided. The method includes generating a first random bit by providing a random number generator (RNG) signal to a magnetoresistive random-access memory (MRAM) cell. The RNG signal has a probability of about 0.5 to switch the resistive state of the MRAM cell from a first resistive state corresponding to a first data state to a second resistive state corresponding to a second data sate. The first random bit is then read from the MRAM cell.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 13, 2023
    Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Chih-Hui Weng, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang, Chia-Hsiang Chen
  • Patent number: 11600661
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a substrate, a transistor region, a metal interconnect, and a magnetic tunneling junction (MTJ). The transistor region includes a gate over the substrate, and a doped region is at least partially in the substrate. The metal interconnect is over the doped region. The metal interconnect includes a metal via. The MTJ is entirely underneath the metal interconnect and between the doped region and the metal via, and a diameter of a bottom surface of the MTJ is greater than a diameter of an upper surface of the MTJ.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: March 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Alexander Kalnitsky, Harry-Hak-Lay Chuang, Sheng-Haung Huang, Tien-Wei Chiang
  • Publication number: 20230065850
    Abstract: An integrated circuit device includes a substrate, a memory cell, a magnetic shielding element, an interlayer dielectric layer, and a metallization pattern. The memory cell is over the substrate. The memory cell includes a bottom electrode, a resistance switching element over the bottom electrode, a top electrode over the resistance switching element. The magnetic shielding element is around the memory cell. The interlayer dielectric layer surrounds the memory cell and the magnetic shielding element. The metallization pattern is in the interlayer dielectric layer and connected to the top electrode.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yuan-Jen LEE, Harry-Hak-Lay CHUANG, Tien-Wei CHIANG, Hung Cho WANG, Kuei-Hung SHEN, Sheng-Huang HUANG
  • Patent number: 11531524
    Abstract: In some embodiments, a method for generating a random bit is provided. The method includes generating a first random bit by providing a random number generator (RNG) signal to a magnetoresistive random-access memory (MRAM) cell. The RNG signal has a probability of about 0.5 to switch the resistive state of the MRAM cell from a first resistive state corresponding to a first data state to a second resistive state corresponding to a second data state. The first random bit is then read from the MRAM cell.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Chih-Hui Weng, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang, Chia-Hsiang Chen
  • Publication number: 20220373594
    Abstract: In some embodiments, a semiconductor wafer testing system is provided. The semiconductor wafer testing system includes a semiconductor wafer prober having one or more conductive probes, where the semiconductor wafer prober is configured to position the one or more conductive probes on an integrated chip (IC) that is disposed on a semiconductor wafer. The semiconductor wafer testing system also includes a ferromagnetic wafer chuck, where the ferromagnetic wafer chuck is configured to hold the semiconductor wafer while the wafer prober positions the one or more conductive probes on the IC. An upper magnet is disposed over the ferromagnetic wafer chuck, where the upper magnet is configured to generate an external magnetic field between the upper magnet and the ferromagnetic wafer chuck, and where the ferromagnetic wafer chuck amplifies the external magnetic field such that the external magnetic field passes through the IC with an amplified magnetic field strength.
    Type: Application
    Filed: August 8, 2022
    Publication date: November 24, 2022
    Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang