Patents by Inventor Tien-Yun Peng

Tien-Yun Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220163573
    Abstract: A voltage state detector includes an input terminal, a voltage drop circuit, a pull-down circuit, a load circuit, a transistor, a pull-up circuit, a first output terminal, and a second output terminal. The voltage drop circuit is coupled to the input terminal. The pull-down circuit is coupled to the voltage drop circuit and a first reference terminal. The load circuit is coupled to a second reference terminal. The transistor has a first terminal coupled to the load circuit, a second terminal coupled to the first reference terminal, and a control terminal coupled to the voltage drop circuit. The pull-up circuit is coupled to the second reference terminal and the voltage drop circuit. The first output terminal is coupled to the first terminal of the transistor for outputting a first state determination signal. The second output terminal is coupled to the voltage drop circuit for outputting a second state determination signal.
    Type: Application
    Filed: December 30, 2020
    Publication date: May 26, 2022
    Inventors: Tien-Yun Peng, Hsien-Huang Tsai, Chih-Sheng Chen
  • Publication number: 20220115994
    Abstract: An amplification circuit includes a switch circuit, an amplifier, and a control circuit. The switch circuit has a first terminal coupled to a radio frequency signal input terminal or a system voltage terminal, a second terminal coupled to an input terminal of the amplifier, and a control terminal configured to receive a control signal. The amplifier amplifies a radio frequency signal. The control circuit generates the control signal according to a driving current generated by the amplifier. When the control circuit determines that the amplifier operates in a high power mode, the control circuit controls the control signal to adjust a conducting level between the first terminal and the second terminal of the switch circuit according to the intensity of the driving current.
    Type: Application
    Filed: January 4, 2021
    Publication date: April 14, 2022
    Inventors: Chih-Sheng Chen, Tien-Yun Peng
  • Patent number: 11296732
    Abstract: A radio frequency signal transmission circuit includes a direct current blocking unit, a biasing impedance circuit, and a radio frequency element. The direct current blocking unit has a first terminal for receiving an input signal, and a second terminal coupled to a first bias voltage terminal. The biasing impedance circuit has a first terminal coupled to the first bias voltage terminal for providing a first bias voltage, and a second terminal coupled to a second bias voltage terminal for receiving a second bias voltage. The radio frequency element is coupled to the first bias voltage terminal, and receives and processes the input signal. When the biasing impedance circuit operates in a first mode, the biasing impedance circuit provides a first impedance. When the biasing impedance circuit operates in a second mode, the biasing impedance circuit provides a second impedance greater than the first impedance.
    Type: Grant
    Filed: July 5, 2020
    Date of Patent: April 5, 2022
    Assignee: RichWave Technology Corp.
    Inventors: Chih-Sheng Chen, Tien-Yun Peng
  • Patent number: 11199864
    Abstract: A voltage controlled circuit includes a tracking circuit, an operational amplifier, a transistor, a feedback circuit and a sample and hold circuit. The tracking circuit generates an updated enabling voltage according to an enabling voltage, a sample enabling voltage and a sample reference voltage. The operational amplifier includes a first input terminal used to receive an input voltage, a second input terminal used to receive a feedback voltage, and an output terminal used to output a control voltage. The transistor includes a control terminal used to receive the control voltage, a first terminal used to receive a reference voltage, and a second terminal used to output a regulated voltage. The feedback circuit generates the feedback voltage according to the regulated voltage. The sample and hold circuit is used to sample the input voltage to generate the sample enabling voltage, and sample the feedback voltage to generate the sample reference voltage.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: December 14, 2021
    Assignee: RichWave Technology Corp.
    Inventors: Chia-Jung Yeh, Tien-Yun Peng, Chih-Sheng Chen
  • Publication number: 20210058037
    Abstract: An amplifier device includes an amplifying unit and a bias module. The amplifying unit has a first end coupled to a voltage source configured to receive a source voltage, a second end configured to receive an input signal, and a third end coupled to a first reference potential terminal configured to receive a first reference potential. The first end of the amplifying unit is configured to output an output signal amplified by the amplifying unit. The bias module is coupled to the second end of the amplifying unit, and configured to receive a voltage signal to generate a bias current according to a first counter-gradient and a second counter-gradient, and provide the bias current to the amplifying unit. The voltage signal is a variable voltage. A supply current flowing into the amplifying unit and is adjusted in accordance with the voltage signal to stay within a predetermined range.
    Type: Application
    Filed: November 9, 2020
    Publication date: February 25, 2021
    Inventors: Chih-Sheng Chen, Tien-Yun Peng, Hung-Chia Lo
  • Publication number: 20210021290
    Abstract: A radio frequency signal transmission circuit includes a direct current blocking unit, a biasing impedance circuit, and a radio frequency element. The direct current blocking unit has a first terminal for receiving an input signal, and a second terminal coupled to a first bias voltage terminal. The biasing impedance circuit has a first terminal coupled to the first bias voltage terminal for providing a first bias voltage, and a second terminal coupled to a second bias voltage terminal for receiving a second bias voltage. The radio frequency element is coupled to the first bias voltage terminal, and receives and processes the input signal. When the biasing impedance circuit operates in a first mode, the biasing impedance circuit provides a first impedance. When the biasing impedance circuit operates in a second mode, the biasing impedance circuit provides a second impedance greater than the first impedance.
    Type: Application
    Filed: July 5, 2020
    Publication date: January 21, 2021
    Inventors: Chih-Sheng Chen, Tien-Yun Peng
  • Patent number: 10873296
    Abstract: An amplifier device comprises an amplifying unit and a bias module. The amplifying unit has a first end coupled to a voltage source configured to receive a source voltage, a second end configured to receive an input signal, and a third end coupled to a first reference potential terminal configured to receive a first reference potential. The first end of the amplifying unit is configured to output an output signal amplified by the amplifying unit. The bias module is coupled to the second end of the amplifying unit, and configured to receive a voltage signal to provide a bias current to the amplifying unit. The voltage signal is a variable voltage. A supply current flowing into the amplifying unit and is adjusted in accordance with the voltage signal to stay within a predetermined range.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: December 22, 2020
    Assignee: RichWave Technology Corp.
    Inventors: Chih-Sheng Chen, Tien-Yun Peng, Hung-Chia Lo
  • Patent number: 10873331
    Abstract: A clamp logic circuit has a logic circuit, a control terminal, a current clamp circuit and an output terminal. The logic circuit has at least a junction field-effect transistor (JFET). The control terminal receives an input signal. The current clamp circuit has a transistor and a resistor. A first end of the transistor is coupled to the control terminal, a second end of the transistor is coupled to a first end of the resistor, a control end of the transistor is coupled to a reference voltage, and a second end of the resistor is coupled to an input end of the logic circuit. The output terminal is coupled to an output end of the logic circuit.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: December 22, 2020
    Assignee: RichWave Technology Corp.
    Inventors: Chih-Sheng Chen, Tien-Yun Peng
  • Patent number: 10862435
    Abstract: An impedance circuit includes a first impedance terminal, a second impedance terminal, a first transistor, a second transistor, a low frequency signal blocking element, and a current-voltage transform circuit. The first transistor is coupled to the first impedance terminal, and controlled by a first voltage. The second transistor is coupled to the first impedance terminal, and controlled by a second voltage. The low frequency signal blocking element is coupled to the first transistor and the second impedance terminal. The current-voltage transform circuit is coupled to the first impedance terminal. The current-voltage transform circuit adjusts a terminal voltage at the first terminal of the current-voltage transform circuit according to a current flowing through the current-voltage transform circuit. The impedance circuit provides impedance between the first and the second impedance terminals according to the terminal voltage and the first voltage.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: December 8, 2020
    Assignee: RichWave Technology Corp.
    Inventors: Chih-Sheng Chen, Hung-Chia Lo, Tien-Yun Peng
  • Patent number: 10797703
    Abstract: A driving apparatus is provided. A first stage inverter circuit and a second stage inverter circuit respectively generate a first output signal and a second output signal according to a first voltage dividing control signal and a second voltage dividing control signal, wherein the first output signal and the second output signal are respectively output to the second-stage inverter circuit and the first-stage inverter circuit to appropriately control the gate voltages of transistors of pull-up circuit and the pull-down circuit in the first-stage inverter circuit and the second-stage inverter circuit, so that source-drain voltages differences of the transistors can be more evenly distributed.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: October 6, 2020
    Assignee: RichWave Technology Corp.
    Inventors: Tien-Yun Peng, Chih-Sheng Chen
  • Patent number: 10707815
    Abstract: An amplifier device includes an amplifying unit, a bias module, an impedance unit and an adjusting module. The amplifying unit has a first end coupled to a voltage source and used for outputting an output signal amplified by the amplifying unit, a second end used for receiving an input signal, and a third end coupled to a first reference potential terminal. The bias module is coupled to the second end of the amplifying unit, and provides a bias voltage to the amplifying unit and adjusts linearity of the amplifier device according to a source voltage from the voltage source. The impedance unit is coupled to the bias module and used to receive a control voltage to adjust an impedance value of the impedance unit. The adjusting module is used to output the control voltage to the impedance unit according to the source voltage and a reference voltage.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: July 7, 2020
    Assignee: RichWave Technology Corp.
    Inventors: Chih-Sheng Chen, Hung-Chia Lo, Tien-Yun Peng
  • Patent number: 10680524
    Abstract: A voltage generator includes an oscillator, a charge pump, a smoothing capacitor, and a driving controller. The oscillator has an output. The charge pump has an input and an output, and the input of the charge pump is coupled to the output of the oscillator. The smoothing capacitor is coupled to the output of the charge pump. The driving controller is coupled to the oscillator, and generates an enable signal to adjust an operation frequency of the oscillator. The voltage generator supplies a driving voltage to a switch for driving the switch via the smoothing capacitor. The driving controller generates the enable signal according to the driving voltage.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: June 9, 2020
    Assignee: RichWave Technology Corp.
    Inventors: Chih-Sheng Chen, Tien-Yun Peng, Hsien-Huang Tsai
  • Publication number: 20200169258
    Abstract: A driving apparatus is provided. A first stage inverter circuit and a second stage inverter circuit respectively generate a first output signal and a second output signal according to a first voltage dividing control signal and a second voltage dividing control signal, wherein the first output signal and the second output signal are respectively output to the second-stage inverter circuit and the first-stage inverter circuit to appropriately control the gate voltages of transistors of pull-up circuit and the pull-down circuit in the first-stage inverter circuit and the second-stage inverter circuit, so that source-drain voltages differences of the transistors can be more evenly distributed.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 28, 2020
    Applicant: RichWave Technology Corp.
    Inventors: Tien-Yun Peng, Chih-Sheng Chen
  • Publication number: 20200099339
    Abstract: An amplifier device comprises an amplifying unit and a bias module. The amplifying unit has a first end coupled to a voltage source configured to receive a source voltage, a second end configured to receive an input signal, and a third end coupled to a first reference potential terminal configured to receive a first reference potential. The first end of the amplifying unit is configured to output an output signal amplified by the amplifying unit. The bias module is coupled to the second end of the amplifying unit, and configured to receive a voltage signal to provide a bias current to the amplifying unit. The voltage signal is a variable voltage. A supply current flowing into the amplifying unit and is adjusted in accordance with the voltage signal to stay within a predetermined range.
    Type: Application
    Filed: November 27, 2019
    Publication date: March 26, 2020
    Inventors: Chih-Sheng Chen, Tien-Yun Peng, Hung-Chia Lo
  • Publication number: 20200044613
    Abstract: An impedance circuit includes a first impedance terminal, a second impedance terminal, a first transistor, a second transistor, a low frequency signal blocking element, and a current-voltage transform circuit. The first transistor is coupled to the first impedance terminal, and controlled by a first voltage. The second transistor is coupled to the first impedance terminal, and controlled by a second voltage. The low frequency signal blocking element is coupled to the first transistor and the second impedance terminal. The current-voltage transform circuit is coupled to the first impedance terminal. The current-voltage transform circuit adjusts a terminal voltage at the first terminal of the current-voltage transform circuit according to a current flowing through the current-voltage transform circuit. The impedance circuit provides impedance between the first and the second impedance terminals according to the terminal voltage and the first voltage.
    Type: Application
    Filed: March 6, 2019
    Publication date: February 6, 2020
    Inventors: Chih-Sheng Chen, Hung-Chia Lo, Tien-Yun Peng
  • Patent number: 10498230
    Abstract: A voltage control device includes a charge pump, a driving circuit, and a control circuit. The charge pump provides a first voltage. The driving circuit is coupled to the charge pump, and receives the first voltage and a reference voltage. The driving circuit outputs a driving signal according to an input signal, the first voltage and the reference voltage. The control circuit is coupled to the charge pump and the driving circuit. Before the first voltage reaches a threshold level, the control circuit adjusts the reference voltage to increase the voltage gap between the first voltage and the reference voltage.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: December 3, 2019
    Assignee: RichWave Technology Corp.
    Inventors: Chih-Sheng Chen, Tien-Yun Peng
  • Patent number: 10454479
    Abstract: An inverter includes a first system voltage terminal, a second system voltage terminal, an output terminal, a plurality of P-type transistors, a plurality of N-type transistors, and a voltage drop impedance element. The first system voltage terminal receives a first voltage, and the second system voltage terminal receives a second voltage. The plurality of P-type transistors are coupled in series between the first system voltage terminal and the output terminal. The plurality of N-type transistors are coupled in series between the output terminal and the second system voltage terminal. The voltage drop impedance element is coupled in parallel with a first N-type transistor of the plurality of N-type transistors, and the impedance of the voltage drop impedance element is smaller than the impedance of the first N-type transistor when the first N-type transistor is turned off.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: October 22, 2019
    Assignee: RichWave Technology Corp.
    Inventors: Chih-Sheng Chen, Tien-Yun Peng
  • Patent number: 10416696
    Abstract: A power supply device includes an input terminal, a regulated voltage output terminal, a switch, a first transistor, and a current split circuit. The input terminal receives a first control voltage. The regulated voltage output terminal outputs an output voltage. The switch has a first terminal coupled to the input terminal, a second terminal, and a control terminal. The first transistor has a first terminal coupled to a voltage terminal, a second terminal coupled to the regulated voltage output terminal, and a control terminal coupled to the second terminal of the switch. The current split circuit is coupled to the voltage terminal and the regulated voltage output terminal. The current split circuit receives the first control voltage or a second control voltage, and includes a second transistor coupled between the voltage terminal and the regulated voltage output terminal.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: September 17, 2019
    Assignee: RichWave Technology Corp.
    Inventors: Chih-Sheng Chen, Tien-Yun Peng
  • Publication number: 20190267949
    Abstract: An amplifier device includes an amplifying unit, a bias module, an impedance unit and an adjusting module. The amplifying unit has a first end coupled to a voltage source and used for outputting an output signal amplified by the amplifying unit, a second end used for receiving an input signal, and a third end coupled to a first reference potential terminal. The bias module is coupled to the second end of the amplifying unit, and provides a bias voltage to the amplifying unit and adjusts linearity of the amplifier device according to a source voltage from the voltage source. The impedance unit is coupled to the bias module and used to receive a control voltage to adjust an impedance value of the impedance unit. The adjusting module is used to output the control voltage to the impedance unit according to the source voltage and a reference voltage.
    Type: Application
    Filed: May 8, 2019
    Publication date: August 29, 2019
    Inventors: Chih-Sheng Chen, Hung-Chia Lo, Tien-Yun Peng
  • Patent number: 10353421
    Abstract: A current mirror device includes an input end for receiving an input signal, an output end for outputting an amplified signal of the input signal, first through third transistors, and an operational amplifier. The first transistor includes a first end coupled to first reference current and a second end coupled to a bias voltage. The control end of the second transistor is coupled to the input end. The third transistor includes a first end coupled to the output end, a second end coupled to the first end of the second transistor and a control end coupled to a reference voltage. The operational amplifier is configured to keep a first voltage and a second voltage at substantially the same level, wherein the first voltage is obtained on the first end of the first transistor and the second voltage is obtained on the first end of the second transistor.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: July 16, 2019
    Assignee: RichWave Technology Corp.
    Inventors: Chih-Sheng Chen, Tien-Yun Peng