Patents by Inventor Tiequn Qiu

Tiequn Qiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130107271
    Abstract: An exemplary resonator fiber optic gyroscope comprises a resonator having an optical fiber loop; a light source configured to generate a light beam; and an intensity modulation circuit coupled between the light source and the resonator. The intensity modulation circuit is configured to modulate the intensity of the light beam from the light source to output an intensity modulated signal to the resonator. The intensity modulation circuit is configured to produce the intensity modulated signal such that harmonics of the intensity modulated signal which overlap a primary wave of a counter-propagating light beam in the resonator have an amplitude below a predetermined threshold. Amplitudes below the predetermined threshold are negligible.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 2, 2013
    Applicant: Honeywell International Inc.
    Inventors: Lee K. Strandjord, Tiequn Qiu, Glen A. Sanders
  • Patent number: 8422024
    Abstract: A hollow-core optical-fiber filter is provided. The hollow-core optical-fiber filter includes a hollow-core optical fiber having a first end-face and an opposing second end-face. The first end-face and the second end-face set a fiber length. The hollow-core optical-fiber filter also includes a first reflective end-cap positioned at the first end-face and a second reflective end-cap positioned at the second end-face. When an optical beam from a laser is coupled into one of the first end-face or the second end-face, an optical output from the opposing end-face has a narrow linewidth and low frequency noise fluctuations.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: April 16, 2013
    Assignee: Honeywell International Inc.
    Inventors: Glen A. Sanders, Lee K. Strandjord, Tiequn Qiu, John Feth, Andrew W. Kaliszek
  • Publication number: 20120307251
    Abstract: A hollow-core optical-fiber filter is provided. The hollow-core optical-fiber filter includes a hollow-core optical fiber having a first end-face and an opposing second end-face. The first end-face and the second end-face set a fiber length. The hollow-core optical-fiber filter also includes a first reflective end-cap positioned at the first end-face and a second reflective end-cap positioned at the second end-face. When an optical beam from a laser is coupled into one of the first end-face or the second end-face, an optical output from the opposing end-face has a narrow linewidth and low frequency noise fluctuations.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 6, 2012
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Glen A. Sanders, Lee K. Strandjord, Tiequn Qiu, John Feth, Andrew W. Kaliszek
  • Publication number: 20120307253
    Abstract: An optical-fiber filter is provided. The optical-fiber filter includes an optical fiber having a first end-face and an opposing second end-face. The first end-face and the second end-face set a fiber length. The first end-face and the second end-face are coated with reflective coatings. When an optical beam emitted from a laser is coupled into one of the first end-face or the second end-face, an optical beam output from the opposing end-face has a narrow linewidth and low frequency noise fluctuations.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 6, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Glen A. Sanders, John Feth, Lee K. Strandjord, Tiequn Qiu
  • Publication number: 20120300198
    Abstract: A laser stabilization system includes laser source having first and second ends; first waveguide portion having first and second ends, first end of first waveguide portion coupled to first end of laser source; second waveguide portion having first and second ends, first end of second waveguide portion coupled to second end of laser source; micro-cavity coupled between second end of first waveguide portion and second end of second waveguide portion, micro-cavity having resonant frequency; and electronic locking loop coupled between micro-cavity and laser source, wherein electronic locking loop electronically locks laser source to resonant frequency of micro-cavity; wherein first waveguide portion is optical locking loop coupled between micro-cavity and laser source, wherein optical locking loop optically locks laser source to resonant frequency of micro-cavity; micro-cavity stabilization loop coupled with micro-cavity, wherein micro-cavity stabilization loop stabilizes resonant frequency of micro-cavity to ref
    Type: Application
    Filed: April 27, 2012
    Publication date: November 29, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Jianfeng Wu, Jennifer S. Strabley, Tiequn Qiu, Glen A. Sanders
  • Patent number: 8274659
    Abstract: A resonator fiber optic gyroscope (RFOG) is disclosed that reduces rotation rate error instability. In one embodiment, the RFOG comprises a resonator optical ring cavity, a first light source in optical communication with the ring cavity and configured to generate a clockwise optical signal, and a second light source in optical communication with the ring cavity and configured to generate a counter-clockwise optical signal. The RFOG also includes a first optical component in optical communication with the first light source and the ring cavity. The first optical component is configured to prevent the clockwise optical signal from being back-reflected to the first light source. A second optical component is in optical communication with the second light source and the ring cavity. The second optical component is configured to prevent the counter-clockwise optical signal from being back-reflected to the second light source.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: September 25, 2012
    Assignee: Honeywell International Inc.
    Inventors: Tiequn Qiu, Lee K. Strandjord, Glen A. Sanders
  • Patent number: 8259301
    Abstract: Systems and methods for reducing rotation sensing errors in a resonator fiber optic gyroscope. An example method propagates a primary light wave through a resonator having an optical fiber and a plurality of optical surfaces for directing the light wave exiting a first end of the optical fiber back into an opposite end of the optical fiber. The optical fiber is wound onto a piezo-electric transducer (PZT) tube. A sinusoidal voltage is applied to the PZT tube to modulate a length of a fiber cavity within the optical fiber. The amplitude and frequency of the fiber cavity length modulation is selected to produce a relative phase modulation between the primary light wave and a double-back reflected light wave, such that the rotation sensing errors resulting from double backscatter of light is at a frequency above a frequency band of interest. This allows the associated error to be filtered out of the rotation rate signal.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: September 4, 2012
    Assignee: Honeywell International Inc.
    Inventors: Lee Strandjord, Glen A. Sanders, Tiequn Qiu
  • Patent number: 8223341
    Abstract: A resonator fiber optic gyroscope includes a sensing resonator having a first resonance frequency for a first laser beam propagation direction and a second resonance frequency for a second laser beam propagation direction; an intensity modulator coupled to an output of the sensing resonator and configured to modulate the intensity of a signal output from the sensing resonator, wherein the intensity modulator modulates the output signal at an intensity modulation frequency; and resonance tracking electronics coupled to an output of the intensity modulator and configured to demodulate the intensity modulated signal output from the intensity modulator at a resonance tracking modulation frequency to produce a first demodulated signal; the resonance tracking electronics further configured to demodulate the first demodulated signal at the intensity modulation frequency, wherein the intensity modulation frequency is different from the resonance tracking modulation frequency.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: July 17, 2012
    Assignee: Honeywell International Inc.
    Inventors: Lee K. Strandjord, Glen A. Sanders, Tiequn Qiu
  • Patent number: 8213019
    Abstract: A RFOG comprises a reference laser configured to produce a reference laser beam; a first laser source configured to produce a first laser beam; a second laser source configured to produce a second laser beam; a sensing resonator coupled to the first and second laser sources such that the first and second laser beams propagate through the sensing resonator in first and second directions, respectively; resonance tracking electronics configured to generate first and second control signals that indicate when the first and second laser beams, respectively, are off resonance; first and second optical combiners configured to beat the first and second outputs of the sensing resonator with the reference laser beam creating first and second beat signals, respectively; wherein the resonance tracking electronics is configured to discriminate between at least one rotation-sensing error and the first and second outputs of the resonator based on the first and second beat signals.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: July 3, 2012
    Assignee: Honeywell International Inc.
    Inventors: Lee K. Strandjord, Glen A. Sanders, Tiequn Qiu
  • Patent number: 8208503
    Abstract: A broadband light source configured to emit a stable broadband optical beam is provided. The broadband light source includes at least one optical pump source, an optical system including a polarization beam combiner, and a solid state laser medium. The optical system is configured to receive at least one optical pump beam from a respective one of the at least one optical pump source. The solid state laser medium receives a substantially unpolarized pump beam from a first output of the optical system. Stable broadband amplified spontaneous emission is output from a second output of the optical system.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: June 26, 2012
    Assignee: Honeywell International Inc.
    Inventors: Tiequn Qiu, Steven J. Sanders
  • Publication number: 20120057167
    Abstract: A RFOG comprises a reference laser configured to produce a reference laser beam; a first laser source configured to produce a first laser beam; a second laser source configured to produce a second laser beam; a sensing resonator coupled to the first and second laser sources such that the first and second laser beams propagate through the sensing resonator in first and second directions, respectively; resonance tracking electronics configured to generate first and second control signals that indicate when the first and second laser beams, respectively, are off resonance; first and second optical combiners configured to beat the first and second outputs of the sensing resonator with the reference laser beam creating first and second beat signals, respectively; wherein the resonance tracking electronics is configured to discriminate between at least one rotation-sensing error and the first and second outputs of the resonator based on the first and second beat signals.
    Type: Application
    Filed: September 7, 2010
    Publication date: March 8, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Lee K. Strandjord, Glen A. Sanders, Tiequn Qiu
  • Publication number: 20120050745
    Abstract: A resonator fiber optic gyroscope (RFOG) is disclosed that reduces rotation rate error instability. In one embodiment, the RFOG comprises a resonator optical ring cavity, a first light source in optical communication with the ring cavity and configured to generate a clockwise optical signal, and a second light source in optical communication with the ring cavity and configured to generate a counter-clockwise optical signal. The RFOG also includes a first optical component in optical communication with the first light source and the ring cavity. The first optical component is configured to prevent the clockwise optical signal from being back-reflected to the first light source. A second optical component is in optical communication with the second light source and the ring cavity. The second optical component is configured to prevent the counter-clockwise optical signal from being back-reflected to the second light source.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Tiequn Qiu, Lee K. Strandjord, Glen A. Sanders
  • Patent number: 8098380
    Abstract: Multiple resonator fiber optic gyroscope (RFOG) configurations comprising one or more mode filters inside the resonator are adopted to effectively suppress unwanted high order spatial modes which can be a significant source of gyro bias errors. The resonator comprises at least a loop fiber, either two or more in/out coupling elements, and connectors that link elements into a circulating loop. Directional elements may be used to separate output light from input light in some of the embodiments. In all embodiments, mode filters are placed in the resonator to guarantee that the light reaching the photodetector is filtered by at least one mode filter in the resonator at least once. The mode filters may contain both spatial mode filters (such as single mode fibers or waveguides) and polarization mode filters (such as polarizing elements) so that both spatial and polarization mode filtering can be implemented simultaneously.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: January 17, 2012
    Assignee: Honeywell International Inc.
    Inventors: Glen A. Sanders, Tiequn Qiu, Lee Strandjord
  • Patent number: 8085407
    Abstract: Systems and methods for optimizing input beam modulation for high gyro sensitivity and low bias errors. The present invention is a resonator optical gyroscope having an optimized phase-modulation amplitude (frequency) for a selected modulation frequency (amplitude) that maximizes the gyro signal-to-noise (S/N) sensitivity. For selected values of the phase modulation amplitude, the polarization cross-coupling induced intensity modulation can be nulled. By setting the phase modulation amplitudes substantially close to these nulling points (e.g. M=3.832 or 7.016 radians, which causes the first order Bessel function to be zero J1(M)=0) and then optimizing the modulation frequency, the intensity modulation induced bias is reduced to zero and gyro S/N sensitivity is maximized.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: December 27, 2011
    Assignee: Honeywell International Inc.
    Inventors: Tiequn Qiu, Glen A. Sanders, Lee Strandjord
  • Publication number: 20110292951
    Abstract: A broadband light source configured to emit a stable broadband optical beam is provided. The broadband light source includes at least one optical pump source, an optical system including a polarization beam combiner, and a solid state laser medium. The optical system is configured to receive at least one optical pump beam from a respective one of the at least one optical pump source. The solid state laser medium receives a substantially unpolarized pump beam from a first output of the optical system. Stable broadband amplified spontaneous emission is output from a second output of the optical system.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 1, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Tiequn Qiu, Steven J. Sanders
  • Publication number: 20110292396
    Abstract: A resonator fiber optic gyroscope includes a sensing resonator having a first resonance frequency for a first laser beam propagation direction and a second resonance frequency for a second laser beam propagation direction; an intensity modulator coupled to an output of the sensing resonator and configured to modulate the intensity of a signal output from the sensing resonator, wherein the intensity modulator modulates the output signal at an intensity modulation frequency; and resonance tracking electronics coupled to an output of the intensity modulator and configured to demodulate the intensity modulated signal output from the intensity modulator at a resonance tracking modulation frequency to produce a first demodulated signal; the resonance tracking electronics further configured to demodulate the first demodulated signal at the intensity modulation frequency, wherein the intensity modulation frequency is different from the resonance tracking modulation frequency.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Lee K. Strandjord, Glen A. Sanders, Tiequn Qiu
  • Patent number: 8068233
    Abstract: Substantially symmetric RFOG configurations for rotation rate sensing using two input/output coupling components. Configurations are disclosed where optical coupling components handles both input and output lightwaves. Reducing the number of input/output coupling components while maintaining a substantially symmetric configuration for the CW and CCW beam reduces losses, prevents realization of bias errors due to asymmetric light paths in the resonator, and produces better signal to noise performance. In addition, the invention discloses systems integrating multiple functions into compact micro-optic devices that are easier to fabricate and package, leading to compact RFOGs with reduced cost and improved manufacturability.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: November 29, 2011
    Assignee: Honeywell International Inc.
    Inventors: Tiequn Qiu, Lee Strandjord, Glen A. Sanders
  • Patent number: 8009296
    Abstract: A resonator gyroscope comprises a reference laser generator to produce a reference light; a first slave light source to produce a first slave light locked to the reference light; a second slave light source to produce a second slave light locked to the reference light; a first optical filter cavity coupled to at least one of the first and second slave light sources to filter out high-frequency fluctuations in the respective first and second slave lights; a resonator coupled to said first and second light sources, the resonator having first and second counter-propagating directions and resonance tracking electronics coupled to the resonator to generate a first beat frequency, a second beat frequency, and a third beat frequency; wherein the rotational rate of the resonator gyroscope is a function of the first, second and third beat frequencies.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: August 30, 2011
    Assignee: Honeywell International Inc.
    Inventors: Glen A. Sanders, Tiequn Qiu, Lee K. Strandjord
  • Patent number: 7973938
    Abstract: A fiber optic gyroscope includes a light source, a coupler coupled to the light source, a photodetector coupled to the coupler, an integrated optic circuit (IOC) coupled to the coupler by a first element, and a sensing loop coupled to the IOC by second and third elements. At least one of the first, second and third elements includes a polarizing element.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: July 5, 2011
    Assignee: Honeywell International Inc.
    Inventors: Tiequn Qiu, Steven J. Sanders, Sorin Moser
  • Publication number: 20110141477
    Abstract: A resonator gyroscope comprises a reference laser generator to produce a reference light; a first slave light source to produce a first slave light locked to the reference light; a second slave light source to produce a second slave light locked to the reference light; a first optical filter cavity coupled to at least one of the first and second slave light sources to filter out high-frequency fluctuations in the respective first and second slave lights; a resonator coupled to said first and second light sources, the resonator having first and second counter-propagating directions and resonance tracking electronics coupled to the resonator to generate a first beat frequency, a second beat frequency, and a third beat frequency; wherein the rotational rate of the resonator gyroscope is a function of the first, second and third beat frequencies.
    Type: Application
    Filed: December 22, 2009
    Publication date: June 16, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Glen A. Sanders, Tiequn Qiu, Lee K. Strandjord