Patents by Inventor Tiesheng Wang
Tiesheng Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11890603Abstract: The present invention discloses methods for producing a guest@nanoporous-host materials, and guest@nanoporous-host materials produced according to these methods. Methods according to the invention comprise steps of infiltrating a nanoporous host material with one or more reagents and a target guest precursor in a reaction environment such that a reaction occurs to form the target guest species within the pores of the nanoporous host material. The reagent comprise either a redox reagent and/or a pH modulator. By analysis of appropriate electrochemical potential-pH diagrams and careful selection of suitable reagents and control of process conditions to produce desired target guest particles from selected target guest precursors, the synthesis strategy to form the guests can be more flexible and versatile than known methods, because typically milder reaction conditions can be used than in such known methods.Type: GrantFiled: August 8, 2019Date of Patent: February 6, 2024Assignee: Tiesheng WANG et al.Inventors: Tiesheng Wang, Stoyan K. Smoukov, Qiang Fu, Lijun Gao
-
Patent number: 11681366Abstract: Images of an eye are captured by a camera. For each of the images, gaze data is obtained and a position of a pupil center is estimated in the image. The gaze data indicates a gaze point and/or gaze direction of the eye when the image was captured. A mapping is calibrated using the obtained gaze data and the estimated positions of the pupil center. The mapping maps positions of the pupil center in images captured by the camera to gaze points at a surface, or to gaze directions. A further image of the eye is captured by the camera. A position of the pupil center is estimated in the further image. Gaze tracking is performed using the calibrated mapping and the estimated position of the pupil center in the further image. These steps may for example be performed at a HMD.Type: GrantFiled: January 13, 2022Date of Patent: June 20, 2023Assignee: Tobii ABInventors: Tiesheng Wang, Gilfredo Remon Salazar, Yimu Wang, Pravin Kumar Rana, Johannes Kron, Mark Ryan, Torbjörn Sundberg
-
Publication number: 20220137704Abstract: Images of an eye are captured by a camera. For each of the images, gaze data is obtained and a position of a pupil center is estimated in the image. The gaze data indicates a gaze point and/or gaze direction of the eye when the image was captured. A mapping is calibrated using the obtained gaze data and the estimated positions of the pupil center. The mapping maps positions of the pupil center in images captured by the camera to gaze points at a surface, or to gaze directions. A further image of the eye is captured by the camera. A position of the pupil center is estimated in the further image. Gaze tracking is performed using the calibrated mapping and the estimated position of the pupil center in the further image. These steps may for example be performed at a HMD.Type: ApplicationFiled: January 13, 2022Publication date: May 5, 2022Applicant: Tobii ABInventors: Tiesheng Wang, Gilfredo Remon Salazar, Yimu Wang, Pravin Kumar Rana, Johannes Kron, Mark Ryan, Torbjorn Sundberg
-
Patent number: 11259010Abstract: Images of an eye are captured at respective time instances by a camera of a head-mounted device. For each time instance, a position of a center of corneal curvature is estimated using an image captured at that time instance, a position of a pupil center is estimated using an image captured at that time instance, and a line is determined through the estimated corneal curvature center position and the estimated pupil center position. A first estimated position of a center of the eye is computed based on the lines determined for time instances in a first time period. A second estimated position of the center of the eye is computed based on the lines determined for time instances in a second time period. Relocation of the head-mounted device relative to a user's head is detected based on the first and second estimated positions of the eye center.Type: GrantFiled: October 31, 2019Date of Patent: February 22, 2022Assignee: Tobii ABInventors: Tiesheng Wang, Pravin Kumar Rana, Yimu Wang, Mark Ryan
-
Patent number: 11249547Abstract: Images of an eye are captured by a camera. For each of the images, gaze data is obtained and a position of a pupil center is estimated in the image. The gaze data indicates a gaze point and/or gaze direction of the eye when the image was captured. A mapping is calibrated using the obtained gaze data and the estimated positions of the pupil center. The mapping maps positions of the pupil center in images captured by the camera to gaze points at a surface, or to gaze directions. A further image of the eye is captured by the camera. A position of the pupil center is estimated in the further image. Gaze tracking is performed using the calibrated mapping and the estimated position of the pupil center in the further image. These steps may for example be performed at a HMD.Type: GrantFiled: October 31, 2019Date of Patent: February 15, 2022Assignee: Tobii ABInventors: Tiesheng Wang, Gilfredo Remon Salazar, Yimu Wang, Pravin Kumar Rana, Johannes Kron, Mark Ryan, Torbjörn Sundberg
-
Publication number: 20210275999Abstract: The present invention relates to methods for producing a guest@nanoporous-host materials, and guest@nanoporous-host materials produced according to these methods. Methods according to the invention comprise steps of infiltrating a nanoporous host material with one or more reagents and a target guest precursor in a reaction environment such that a reaction occurs to form the target guest species within the pores of the nanoporous host material. The reagents comprise either a redox reagent and/or a pH modulator. By analysis of appropriate electrochemical potential-pH diagrams and careful selection of suitable reagents and control of process conditions to produce desired target guest particles from selected target guest precursors, the synthesis strategy to form the guests can be more flexible and versatile than known methods, because typically milder reaction conditions can be used than in such known methods.Type: ApplicationFiled: August 8, 2019Publication date: September 9, 2021Inventors: Tiesheng WANG, Stoyan K. SMOUKOV, Qiang FU, Lijun GAO
-
Publication number: 20200195915Abstract: Images of an eye are captured at respective time instances by a camera of a head-mounted device. For each time instance, a position of a center of corneal curvature is estimated using an image captured at that time instance, a position of a pupil center is estimated using an image captured at that time instance, and a line is determined through the estimated corneal curvature center position and the estimated pupil center position. A first estimated position of a center of the eye is computed based on the lines determined for time instances in a first time period. A second estimated position of the center of the eye is computed based on the lines determined for time instances in a second time period. Relocation of the head-mounted device relative to a user's head is detected based on the first and second estimated positions of the eye center.Type: ApplicationFiled: October 31, 2019Publication date: June 18, 2020Applicant: Tobii ABInventors: Tiesheng Wang, Pravin Kumar Rana, Yimu Wang, Mark Ryan
-
Publication number: 20200192473Abstract: Images of an eye are captured by a camera. For each of the images, gaze data is obtained and a position of a pupil center is estimated in the image. The gaze data indicates a gaze point and/or gaze direction of the eye when the image was captured. A mapping is calibrated using the obtained gaze data and the estimated positions of the pupil center. The mapping maps positions of the pupil center in images captured by the camera to gaze points at a surface, or to gaze directions. A further image of the eye is captured by the camera. A position of the pupil center is estimated in the further image. Gaze tracking is performed using the calibrated mapping and the estimated position of the pupil center in the further image. These steps may for example be performed at a HMD.Type: ApplicationFiled: October 31, 2019Publication date: June 18, 2020Applicant: Tobii ABInventors: Tiesheng Wang, Gilfredo Remon Salazar Salazar Salazar, Yimu Wang, Pravin Kumar Rana, Johannes Kron, Mark Ryan, Torbjörn Sundberg