Patents by Inventor Till Gerlach

Till Gerlach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230256426
    Abstract: A method for producing a multimetal oxide catalyst comprises preparation of a precursor composition, exposing said precursor composition to elevated temperatures to activate the composition, and grinding the activated composition. The preparation of the precursor composition comprises: a) forming a plasticized precursor composition from the constituents of the composition; b) discharging the plasticized precursor composition from an extruder having at least one die to form extrudates; c) allowing the extrudates to drop onto a transfer surface disposed beneath the at least one die whereby the extrudates break into pieces which come to rest on the transfer surface; d) transferring the pieces to at least one drying chamber; and e) moving the pieces, through the at least one drying chamber on an air permeable drying conveyor belt; wherein steps b) through d) are carried out under reduced pressure. The method allows the production of a multimetal oxide catalyst with uniform characteristics.
    Type: Application
    Filed: September 23, 2021
    Publication date: August 17, 2023
    Inventors: Marcus SUESS, Cathrin Alexandra WELKER-NIEUWOUDT, Till GERLACH, Volker BENDIG
  • Patent number: 9555374
    Abstract: The present invention relates to a method of conditioning suspended catalysts, wherein at least part of the catalyst-comprising reaction medium is taken from one or more reactors and the suspended, at least partially inactivated catalysts are separated off and purified by means of at least one membrane filtration, with at least one of the membrane filtrations being carried out as a diafiltration.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: January 31, 2017
    Assignee: BASF SE
    Inventors: Hartwig Voss, Ekkehard Schwab, Bram Willem Hoffer, Till Gerlach
  • Patent number: 8765634
    Abstract: A catalytically active composition comprising, prior to reduction with hydrogen: 10 to 75% by weight of an oxygen compound of zirconium, calculated as ZrO2; 1 to 30% by weight of an oxygen compound of copper, calculated as CuO; 10 to 50% by weight of an oxygen compound of nickel, calculated as NiO; 10 to 50% by weight of an oxygen compound of cobalt, calculated as CoO; and 0.1 to 10% by weight of one or more oxygen compounds of one or more metals selected from the group consisting of Pb, Bi, Sn, Sb and In, calculated as PbO, Bi2O3, SnO, Sb2O3 or In2O3, respectively.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: July 1, 2014
    Assignee: BASF SE
    Inventors: Petr Kubanek, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder, Holger Evers, Till Gerlach
  • Publication number: 20120071316
    Abstract: The present invention relates to a method of conditioning suspended catalysts, wherein at least part of the catalyst-comprising reaction medium is taken from one or more reactors and the suspended, at least partially inactivated catalysts are separated off and purified by means of at least one membrane filtration, with at least one of the membrane filtrations being carried out as a diafiltration.
    Type: Application
    Filed: April 26, 2010
    Publication date: March 22, 2012
    Applicant: BASF SE
    Inventors: Hartwig Voss, Ekkehard Schwab, Bram Willem Hoffer, Till Gerlach
  • Patent number: 8134028
    Abstract: A process for preparing 1,2-diamino-3-methylcyclohexane and/or 1,2-diamino-4-methylcyclohexane by reacting 2,3- and/or 3,4-diaminotoluene with hydrogen at elevated pressure and elevated temperature in the presence of a heterogeneous rhodium catalyst, wherein a mixture comprising 2,3- and/or 3,4-diaminotoluene, a dialkyl ether and/or alicyclic ether as a solvent and ammonia is initially charged in an autoclave in the presence of the catalyst and subsequently hydrogenated while supplying hydrogen.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: March 13, 2012
    Assignee: BASF SE
    Inventors: Friederike Osswald, Karl Heinz Brauch, Arnd Bottcher, Jochem Henkelmann, Frederik van Laar, Till Gerlach
  • Publication number: 20120035049
    Abstract: A catalytically active composition comprising, prior to reduction with hydrogen: 10 to 75% by weight of an oxygen compound of zirconium, calculated as ZrO2; 1 to 30% by weight of an oxygen compound of copper, calculated as CuO; 10 to 50% by weight of an oxygen compound of nickel, calculated as NiO; 10 to 50% by weight of an oxygen compound of cobalt, calculated as CoO; and 0.1 to 10% by weight of one or more oxygen compounds of one or more metals selected from the group consisting of Pb, Bi, Sn, Sb and In, calculated as PbO, Bi2O3, SnO, Sb2O3 or In2O3, respectively.
    Type: Application
    Filed: October 11, 2011
    Publication date: February 9, 2012
    Applicant: BASF SE
    Inventors: Petr Kubanek, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder, Holger Evers, Till Gerlach
  • Patent number: 8063252
    Abstract: Processes comprising: (i) providing a reactant selected from the group consisting of primary alcohols, secondary alcohols, aldehydes, ketones and mixtures thereof; and (ii) reacting the reactant with hydrogen and a nitrogen compound selected from the group consisting of ammonia, primary amines, secondary amines and mixtures thereof, in the presence of a catalyst comprising a zirconium dioxide- and nickel-containing catalytically active composition, to form an amine; wherein the catalytically active composition, prior to reduction with hydrogen, comprises oxygen compounds of zirconium, copper, nickel and cobalt, and one or more oxygen compounds of one or more metals selected from the group consisting of Pb, Bi, Sn, Sb and In.
    Type: Grant
    Filed: July 4, 2007
    Date of Patent: November 22, 2011
    Assignee: BASF SE
    Inventors: Petr Kubanek, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder, Holger Evers, Till Gerlach
  • Patent number: 7919655
    Abstract: Processes comprising: (i) providing a reactant selected from the group consisting of primary alcohols, secondary alcohols, aldehydes, ketones and mixtures thereof; and (ii) reacting the reactant with hydrogen and a nitrogen compound selected from the group consisting of ammonia, primary amines, secondary amines and mixtures thereof, in the presence of a catalyst comprising a zirconium dioxide- and nickel-containing catalytically active composition, to form an amine; wherein the catalytically active composition, prior to reduction with hydrogen, comprises oxygen compounds of zirconium, copper, and nickel, and one or more oxygen compounds of one or more metals selected from the group consisting of Sb, Pb, Bi, and In.
    Type: Grant
    Filed: July 4, 2007
    Date of Patent: April 5, 2011
    Assignee: BASF SE
    Inventors: Petr Kubanek, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder, Holger Evers, Till Gerlach
  • Publication number: 20100191000
    Abstract: Process for preparing an N-unsubstituted or N-substituted aziridine of the formula which comprises reacting an olefin of the formula I where R1 to R5 are each, independently of one another, hydrogen, a linear or branched alkyl radical having from 1 to 16 carbon atoms, a hydroxyalkyl radical having from 1 to 4 carbon atoms, a cycloalkyl radical having from 5 to 7 carbon atoms, a benzyl or phenyl radical which in each case may be substituted in the o, m or p position of the phenyl radical by methoxy, hydroxy, chlorine or alkyl radicals having from 1 to 4 carbon atoms and the radical R1 or R2 together with the radical R3 or R4 may be closed to form a 5- to 12-membered ring or the radicals R1 and R2 may be closed to form a 5- to 12-membered ring, with ammonia or a primary amine of the formula R5NH2 in the presence of iodine or bromine.
    Type: Application
    Filed: June 18, 2008
    Publication date: July 29, 2010
    Applicant: BASF SE
    Inventors: Johann-Peter Melder, Martin Ernst, Till Gerlach, Ekkehard Schwab, Csaba Varszegi, Bert Sels, Dirk de Vos
  • Patent number: 7754922
    Abstract: Processes comprising: (i) providing a reactant selected from the group consisting of primary alcohols, secondary alcohols, aldehydes, ketones and mixtures thereof; and (ii) reacting the reactant with hydrogen and a nitrogen compound selected from the group consisting of ammonia, primary amines, secondary amines and mixtures thereof, in the presence of a catalyst comprising a zirconium dioxide- and nickel-containing catalytically active composition, to form an amine; wherein the catalytically active composition, prior to reduction with hydrogen, comprises oxygen compounds of zirconium, copper, nickel and cobalt, and one or more oxygen compounds of molybdenum in an amount of 5.5 to 12% by weight, calculated as MoO3.
    Type: Grant
    Filed: July 4, 2007
    Date of Patent: July 13, 2010
    Assignee: BASF SE
    Inventors: Petr Kubanek, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder, Holger Evers, Till Gerlach
  • Patent number: 7696384
    Abstract: Processes comprising: providing a starting material comprising monoethanolamine; and reacting the starting material with ammonia in the presence of a heterogeneous transition metal catalyst to form a reaction product comprising one or more ethylene amines; wherein the catalyst comprises a catalytically active composition, which prior to treatment with hydrogen, comprises a mixture of oxygen-containing compounds of aluminum, copper, nickel and cobalt; and wherein the catalyst is present as one or more shaped catalyst particles selected from spheres, extrudates, pellets and other geometries, wherein the sphere or extrudate has a diameter of <3 mm, the pellet has a height of <3 mm, and the other geometries have an equivalent diameter L=1/a? of <0.70 mm, where a? is the external surface area per unit volume (mms2/mmp3), as defined by a ? = A p V p where Ap is the external surface area of the catalyst particle (mms2) and Vp is the volume of the catalyst particle (mmp3).
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: April 13, 2010
    Assignee: BASF SE
    Inventors: Gunther Van Cauwenberge, Johann-Peter Melder, Holger Evers, Till Gerlach, Frank Kiesslich, Ekkehard Schwab, Bram Willem Hoffer
  • Publication number: 20100010264
    Abstract: Processes comprising: (i) providing a reactant selected from the group consisting of primary alcohols, secondary alcohols, aldehydes, ketones and mixtures thereof; and (ii) reacting the reactant with hydrogen and a nitrogen compound selected from the group consisting of ammonia, primary amines, secondary amines and mixtures thereof, in the presence of a catalyst comprising a zirconium dioxide- and nickel-containing catalytically active composition, to form an amine; wherein the catalytically active composition, prior to reduction with hydrogen, comprises oxygen compounds of zirconium, copper, and nickel, and one or more oxygen compounds of one or more metals selected from the group consisting of Sb, Pb, Bi, and In.
    Type: Application
    Filed: July 4, 2007
    Publication date: January 14, 2010
    Applicant: BASF SE
    Inventors: Petr Kubanek, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder, Holger Evers, Till Gerlach
  • Patent number: 7642382
    Abstract: Processes comprising: (a) providing a first reactant comprising a bioethanol; and (b) reacting the first reactant with a second reactant comprising a component selected from the group consisting of ammonia, primary amines, secondary amines and mixtures thereof, in the presence of hydrogen and a catalytically effective amount of a heterogeneous hydrogenation/dehydrogenation catalyst to form an ethylamine; wherein the catalyst has been activated at a temperature of 100 to 500° C. for at least 25 minutes; wherein prior to activation the catalyst comprises: (i) 20 to 65% by weight of a support material comprising one or both of zirconium dioxide (ZrO2) and aluminum oxide (Al2O3), (ii) 1 to 30% by weight of oxygen-comprising compounds of copper, calculated as CuO, and (iii) 21 to 70% by weight of oxygen-comprising compounds of nickel, calculated as NiO; and wherein after activation the catalyst has a CO uptake capacity of >110 ?mol of CO/g of the catalyst.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: January 5, 2010
    Assignee: BASF SE
    Inventors: Till Gerlach, Frank Haese, Anton Meier, Johann-Peter Melder, Heinz Rütter
  • Publication number: 20090286977
    Abstract: Processes comprising: (i) providing a reactant selected from the group consisting of primary alcohols, secondary alcohols, aldehydes, ketones and mixtures thereof; and (ii) reacting the reactant with hydrogen and a nitrogen compound selected from the group consisting of ammonia, primary amines, secondary amines and mixtures thereof, in the presence of a catalyst comprising a zirconium dioxide- and nickel-containing catalytically active composition, to form an amine; wherein the catalytically active composition, prior to reduction with hydrogen, comprises oxygen compounds of zirconium, copper, nickel and cobalt, and one or more oxygen compounds of one or more metals selected from the group consisting of Pb, Bi, Sn, Sb and In.
    Type: Application
    Filed: July 4, 2007
    Publication date: November 19, 2009
    Applicant: BASF SE
    Inventors: Petr Kubanek, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder, Holger Evers, Till Gerlach
  • Patent number: 7615665
    Abstract: Processes comprising: providing a starting material comprising ethylenediamine; and reacting the starting material in the presence of a heterogeneous transition metal catalyst to form one or more ethylene amines; wherein the catalyst comprises a catalytically active composition, which prior to treatment with hydrogen, comprises a mixture of oxygen-containing compounds of aluminum, copper, nickel and cobalt; and wherein the catalyst is present as one or more shaped catalyst particles selected from spheres, extrudates, pellets and other geometries, wherein the sphere or extrudate has a diameter of <3 mm, the pellet has a height of <3 mm, and the other geometries have an equivalent diameter L=1/a? of <0.70 mm, where a? is the external surface area per unit volume (mms2/mmp3), as defined by a ? = A p V p where Ap is the external surface area of the catalyst particle (mms2) and Vp is the volume of the catalyst particle (mmp3).
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: November 10, 2009
    Assignee: BASF SE
    Inventors: Till Gerlach, Holger Evers, Johann-Peter Melder
  • Publication number: 20090275781
    Abstract: Processes comprising: (i) providing a reactant selected from the group consisting of primary alcohols, secondary alcohols, aldehydes, ketones and mixtures thereof, and (ii) reacting the reactant with hydrogen and a nitrogen compound selected from the group consisting of ammonia, primary amines, secondary amines and mixtures thereof, in the presence of a catalyst comprising a zirconium dioxide- and nickel-containing catalytically active composition, to form an amine; wherein the catalytically active composition, prior to reduction with hydrogen, comprises oxygen compounds of zirconium, copper, nickel and cobalt, and one or more oxygen compounds of molybdenum in an amount of 5.5 to 12% by weight, calculated as MoO3.
    Type: Application
    Filed: July 4, 2007
    Publication date: November 5, 2009
    Applicant: BASF SE
    Inventors: Petr Kubanek, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder, Holger Evers, Till Gerlach
  • Publication number: 20090264652
    Abstract: Processes comprising: (i) providing a reactant selected from the group consisting of primary alcohols, secondary alcohols, aldehydes, ketones and mixtures thereof; and (ii) reacting the reactant with hydrogen and a nitrogen compound selected from the group consisting of ammonia, primary amines, secondary amines and mixtures thereof in the presence of a catalyst comprising a zirconium dioxide- and nickel-containing catalytically active composition, to form an amine; wherein the catalytically active composition, prior to reduction with hydrogen, comprises oxygen compounds of zirconium, copper, nickel and cobalt, and one or more oxygen compounds of silver in an amount of 0.5 to 6% by weight, calculated as AgO.
    Type: Application
    Filed: July 4, 2007
    Publication date: October 22, 2009
    Applicant: Basf SE
    Inventors: Petr Kubanek, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder, Holger Evers, Till Gerlach
  • Publication number: 20090253938
    Abstract: A process for preparing 1,2-diamino-3-methylcyclohexane and/or 1,2-diamino-4-methylcyclohexane by reacting 2,3- and/or 3,4-diaminotoluene with hydrogen at elevated pressure and elevated temperature in the presence of a heterogeneous rhodium catalyst, wherein a mixture comprising 2,3- and/or 3,4-diaminotoluene, a dialkyl ether and/or alicyclic ether as a solvent and ammonia is initially charged in an autoclave in the presence of the catalyst and subsequently hydrogenated while supplying hydrogen.
    Type: Application
    Filed: December 14, 2005
    Publication date: October 8, 2009
    Applicant: BASF AKTIENGESELLSCHAFT
    Inventors: Friederike Osswald, Karl Heinz Brauch, Arnd Bottcher, Jochem Henkelmann, Frederik Van Laar, Till Gerlach
  • Publication number: 20090234163
    Abstract: Processes comprising: (a) providing a first reactant comprising a bioethanol; and (b) reacting the first reactant with a second reactant comprising a component selected from the group consisting of ammonia, primary amines, secondary amines and mixtures thereof, in the presence of hydrogen and a catalytically effective amount of a heterogeneous hydrogenation/dehydrogenation catalyst to form an ethylamine; wherein the catalyst has been activated at a temperature of 100 to 500° C. for at least 25 minutes; wherein prior to activation the catalyst comprises: (i) 20 to 65% by weight of a support material comprising one or both of zirconium dioxide (ZrO2) and aluminum oxide (Al2O3), (ii) 1 to 30% by weight of oxygen-comprising compounds of copper, calculated as CuO, and (iii) 21 to 70% by weight of oxygen-comprising compounds of nickel, calculated as NiO; and wherein after activation the catalyst has a CO uptake capacity of >110 ?mol of CO/g of the catalyst.
    Type: Application
    Filed: March 14, 2006
    Publication date: September 17, 2009
    Applicant: BASF AKTIENGESELLSCHAFT
    Inventors: Till Gerlach, Frank Haese, Anton Meier, Johann-Peter Melder, Heinz Rütter
  • Patent number: 7563933
    Abstract: Process for preparing an ethylamine by reacting ethanol with ammonia, a primary amine or a secondary amine in the presence of hydrogen and a heterogeneous catalyst, in which a biochemically prepared ethanol (bioethanol) in which the concentration of sulfur and/or sulfur-containing compounds has been reduced beforehand by bringing it into contact with an adsorbent is used.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: July 21, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Anton Meier, Johann-Peter Melder, Till Gerlach, Frank Haese