Patents by Inventor Tillman Gerngross

Tillman Gerngross has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8815544
    Abstract: The present invention provides a novel lower eukaryotic host cell producing human-like glycoproteins characterized as having a terminal ?-galactose residue and essentially lacking fucose and sialic acid residues. The present invention also provides a method for catalyzing the transfer of a galactose residue from UDP-galactose onto an acceptor substrate in a recombinant lower eukaryotic host cell, which can be used as a therapeutic glycoprotein.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: August 26, 2014
    Assignee: Glycofi, Inc.
    Inventors: Robert Davidson, Tillman Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen Robin Hamilton
  • Patent number: 8771720
    Abstract: Polyhydroxyalkanoates (PHAs) from which pyrogen has been removed are provided. PHAs which have been chemically modified to enhance physical and/or chemical properties, for targeting or to modify biodegradability or clearance by the reticuloendothelial system (RES), are described. Methods for depyrogenating PHA polymers prepared by bacterial fermentation processes are also provided, wherein pyrogens are removed from the polymers without adversely impacting the polymers' inherent chemical structures and physical properties. PHAs with advantageous processing characteristics, including low melting points and/or solubility in non-toxic solvents, are also described. The PHAs are suitable for use in in vivo applications such as in tissue coatings, stents, sutures, tubing, bone, other prostheses, bone or tissue cements, tissue regeneration devices, wound dressings, drug delivery, and for diagnostic and prophylactic uses.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: July 8, 2014
    Assignee: Metabolix, Inc.
    Inventors: Simon F. Williams, David P. Martin, Tillman Gerngross, Daniel M. Horowitz
  • Patent number: 8231889
    Abstract: Polyhydroxyalkanoates (PHAs) from which pyrogen has been removed are provided for use in numerous biomedical applications. PHAs which have been chemically modified to enhance physical and/or chemical properties, for targeting or to modify biodegradability or clearance by the reticuloendothelial system (RES), are described. Methods for depyrogenating PHA polymers prepared by bacterial fermentation processes are also provided, wherein pyrogens are removed from the polymers without adversely impacting the polymers' inherent chemical structures and physical properties. PHAs with advantageous processing characteristics, including low melting points and/or solubility in non-toxic solvents, are also described. PHAs are provided which are suitable for use in in vivo applications such as in tissue coatings, stents, sutures, tubing, bone and other prostheses, bone or tissue cements, tissue regeneration devices, wound dressings, drug delivery, and for diagnostic and prophylactic uses.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: July 31, 2012
    Assignee: Metabolix, Inc.
    Inventors: Simon F. Williams, David P. Martin, Tillman Gerngross, Daniel M. Horowitz
  • Publication number: 20110135707
    Abstract: Polyhydroxyalkanoates (PHAs) from which pyrogen has been removed are provided for use in numerous biomedical applications. PHAs which have been chemically modified to enhance physical and/or chemical properties, for targeting or to modify biodegradability or clearance by the reticuloendothelial system (RES), are described. Methods for depyrogenating PHA polymers prepared by bacterial fermentation processes are also provided, wherein pyrogens are removed from the polymers without adversely impacting the polymers' inherent chemical structures and physical properties. PHAs with advantageous processing characteristics, including low melting points and/or solubility in non-toxic solvents, are also described. PHAs are provided which are suitable for use in in vivo applications such as in tissue coatings, stents, sutures, tubing, bone and other prostheses, bone or tissue cements, tissue regeneration devices, wound dressings, drug delivery, and for diagnostic and prophylactic uses.
    Type: Application
    Filed: February 4, 2011
    Publication date: June 9, 2011
    Inventors: Simon F. Williams, David P. Martin, Tillman Gerngross, Daniel M. Horowitz
  • Patent number: 7906135
    Abstract: Polyhydroxyalkanoates (PHAs) from which pyrogen has been removed are provided for use in numerous biomedical applications. PHAs which have been chemically modified to enhance physical and/or chemical properties, for targeting or to modify biodegradability or clearance by the reticuloendothelial system (RES), are described. Methods for depyrogenating PHA polymers prepared by bacterial fermentation processes are also provided, wherein pyrogens are removed from the polymers without adversely impacting the polymers' inherent chemical structures and physical properties. PHAs with advantageous processing characteristics, including low melting points and/or solubility in non-toxic solvents, are also described. PHAs are provided which are suitable for use in vivo applications such as in tissue coatings, stents, sutures, tubing, bone and other prostheses, bone or tissue cements, tissue regeneration devices, wound dressings, drug delivery, and for diagnostic and prophylactic uses.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: March 15, 2011
    Assignee: Metabolix, Inc.
    Inventors: Simon F. Williams, David P. Martin, Tillman Gerngross, Daniel M. Horowitz
  • Publication number: 20090226464
    Abstract: The present invention relates to immunoglobulin glycoprotein compositions having predominant N-glycan structures on an immunoglobulin glycoprotein which confer a specific effector function. Additionally, the present invention relates to pharmaceutical compositions comprising an antibody having a particular enriched N-glycan structure, wherein said N-glycan structure is selected from the group consisting of Man7GlcNAc2 and Man8GlcNAc2.
    Type: Application
    Filed: September 9, 2005
    Publication date: September 10, 2009
    Inventors: Tillman Gerngross, Stefan Wildt, Huijuan Li
  • Publication number: 20090136525
    Abstract: Compositions and methods for producing compositions comprising immunoglobulins or immunoglobulin fragments having an N-linked glycosylation pattern consisting predominantly of the GlCNAcMan3GlcNAc2 N-glycan structure are disclosed. The GlCNAcMan3GlcNAc2 N-glycan structure effects an increase in binding to the Fc?Ri? receptors and a decrease in binding to the Fc?RH receptors.
    Type: Application
    Filed: September 1, 2006
    Publication date: May 28, 2009
    Inventors: Tillman Gerngross, Stefan Wildt, Huijuan Li
  • Patent number: 7479389
    Abstract: Novel genes encoding P. pastoris ARG1, ARG2, ARG3, HIS1, HIS2, HIS5 and HIS6 are disclosed. A method for inactivating alternately at least two biosynthetic pathways in a methylotrophic yeast is provided. A method for producing and selecting yeast strains characterized as being capable of genetic integration of heterologous sequences into the host genome using the genes involved in the biosynthetic pathways is also disclosed.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: January 20, 2009
    Assignee: GlycoFi, Inc.
    Inventors: Juergen Nett, Tillman Gerngross
  • Publication number: 20070280899
    Abstract: Polyhydroxyalkanoates (PHAs) from which pyrogen has been removed are provided for use in numerous biomedical applications. PHAs which have been chemically modified to enhance physical and/or chemical properties, for targeting or to modify biodegradability or clearance by the reticuloendothelial system (RES), are described. Methods for depyrogenating PHA polymers prepared by bacterial fermentation processes are also provided, wherein pyrogens are removed from the polymers without adversely impacting the polymers' inherent chemical structures and physical properties. PHAs with advantageous processing characteristics, including low melting points and/or solubility in non-toxic solvents, are also described. PHAs are provided which are suitable for use in vivo applications such as in tissue coatings, stents, sutures, tubing, bone and other prostheses, bone or tissue cements, tissue regeneration devices, wound dressings, drug delivery, and for diagnostic and prophylactic uses.
    Type: Application
    Filed: May 15, 2007
    Publication date: December 6, 2007
    Inventors: Simon Williams, David Martin, Tillman Gerngross, Daniel Horowitz
  • Publication number: 20070178551
    Abstract: Cell lines having genetically modified glycosylation pathways that allow them to carry out a sequence of enzymatic reactions, which mimic the processing of glycoproteins in humans, have been developed. Recombinant proteins expressed in these engineered hosts yield glycoproteins more similar, if not substantially identical, to their human counterparts. The lower eukaryotes, which ordinarily produce high-mannose containing N-glycans, including unicellular and multicellular fungi are modified to produce N-glycans such as Man5GlcNAc2 or other structures along human glycosylation pathways.
    Type: Application
    Filed: November 1, 2005
    Publication date: August 2, 2007
    Applicant: GlycoFi, Inc.
    Inventor: Tillman Gerngross
  • Patent number: 7244442
    Abstract: Polyhydroxyalkanoates (PHAs) from which pyrogen has been removed are provided for use in numerous biomedical applications. PHAs which have been chemically modified to enhance physical and/or chemical properties, for targeting or to modify biodegradability or clearance by the reticuloendothelial system (RES), are described. Methods for depyrogenating PHA polymers prepared by bacterial fermentation processes are also provided, wherein pyrogens are removed from the polymers without adversely impacting the polymers' inherent chemical structures and physical properties. PHAs with advantageous processing characteristics, including low melting points and/or solubility in non-toxic solvents, are also described. PHAs are provided which are suitable for use in in vivo applications such as in tissue coatings, stents, sutures, tubing, bone and other prostheses, bone or tissue cements, tissue regeneration devices, wound dressings, drug delivery, and for diagnostic and prophylactic uses.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: July 17, 2007
    Assignee: Metabolix, Inc.
    Inventors: Simon F. Williams, David P. Martin, Tillman Gerngross, Daniel M. Horowitz
  • Publication number: 20070105127
    Abstract: Cell lines having genetically modified glycosylation pathways that allow them to carry out a sequence of enzymatic reactions, which mimic the processing of glycoproteins in humans, have been developed. Recombinant proteins expressed in these engineered hosts yield glycoproteins more similar, if not substantially identical, to their human counterparts. The lower eukaryotes, which ordinarily produce high-mannose containing N-glycans, including unicellular and multicellular fungi are modified to produce N-glycans such as Man5GlcNAc2 or other structures along human glycosylation pathways.
    Type: Application
    Filed: November 10, 2005
    Publication date: May 10, 2007
    Applicant: GlycoFi, Inc.
    Inventor: Tillman Gerngross
  • Publication number: 20070072262
    Abstract: Novel genes encoding P. pastoris ARG1, ARG2, ARG3, HIS1, HIS2, HIS5 and HIS6 are disclosed. A method for inactivating alternately at least two biosynthetic pathways in a methylotrophic yeast is provided. A method for producing and selecting yeast strains characterized as being capable of genetic stable integration of heterologous sequences into the host genome using the genes involved in the biosynthetic pathways is also disclosed.
    Type: Application
    Filed: March 2, 2005
    Publication date: March 29, 2007
    Inventors: Juergen Nett, Tillman Gerngross
  • Publication number: 20070037248
    Abstract: The present invention relates to eukaryotic host cells, especially lower eukaryotic host cells, having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar and sugar nucleotide transporters to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified lipid-linked oligosaccharides are created or selected. N-glycans made in the engineered host cells exhibit GnTIII, GnTIV, GnTV, GnT VI or GnTIX activity, which produce bisected and/or multiantennary N-glycan structures and may be modified further by heterologous expression of one or more enzymes, e.g., glycosyltransferases, sugar, sugar nucleotide transporters, to yield human-like glycoproteins.
    Type: Application
    Filed: February 20, 2004
    Publication date: February 15, 2007
    Inventors: Piotr Bobrowicz, Stephen Hamilton, Tillman Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Nett, Robert Davidson
  • Publication number: 20060257399
    Abstract: The present invention relates to immunoglobulin glycoprotein compositions having predominant N-glycan structures on an immunoglobulin glycoprotein which confer a specific effector function. Additionally, the present invention relates to pharmaceutical compositions comprising an antibody having a particular enriched N-glycan structure, wherein said N-glycan structure is Man5GlcNAc2.
    Type: Application
    Filed: December 22, 2005
    Publication date: November 16, 2006
    Applicant: GlycoFi, Inc.
    Inventors: Tillman Gerngross, Huijuan Li, Stefan Wildt
  • Publication number: 20060252096
    Abstract: Disclosed are antibodies and methods for making antibodies with desired glycosylation and efficient production. Host cells transformed with a nucleic acid encoding a fusion protein comprising a signal sequence, light and heavy immunoglobulin chains, each comprising a variable region and a constant region and separated by a spacer peptide comprising at least one proteolytic cleavage site are cultured to express the nucleic acids and are cleaved by appropriate proteases to produce antibodies.
    Type: Application
    Filed: April 25, 2006
    Publication date: November 9, 2006
    Applicant: GlycoFi, Inc.
    Inventors: Dongxing Zha, Byung-Kwon Choi, Tillman Gerngross
  • Publication number: 20060177898
    Abstract: Cell lines having genetically modified glycosylation pathways that allow them to carry out a sequence of enzymatic reactions, which mimic the processing of glycoproteins in humans, have been developed. Recombinant proteins expressed in these engineered hosts yield glycoproteins more similar, if not substantially identical, to their human counterparts. The lower eukaryotes, which ordinarily produce high-mannose containing N-glycans, including unicellular and multicellular fungi are modified to produce N-glycans such as Man5GlcNAc2 or other structures along human glycosylation pathways.
    Type: Application
    Filed: October 11, 2005
    Publication date: August 10, 2006
    Applicant: GlycoFi, Inc.
    Inventor: Tillman Gerngross
  • Publication number: 20060148035
    Abstract: Cell lines having genetically modified glycosylation pathways that allow them to carry out a sequence of enzymatic reactions, which mimic the processing of glycoproteins in humans, have been developed. Recombinant proteins expressed in these engineered hosts yield glycoproteins more similar, if not substantially identical, to their human counterparts. The lower eukaryotes, which ordinarily produce high-mannose containing N-glycans, including unicellular and multicellular fungi are modified to produce N-glycans such as Man5GlcNAc2 or other structures along human glycosylation pathways.
    Type: Application
    Filed: November 10, 2005
    Publication date: July 6, 2006
    Applicant: GlycoFi, Inc.
    Inventor: Tillman Gerngross
  • Publication number: 20060141570
    Abstract: Purification of recombinant proteins is performed by expressing in a host cell a fusion protein comprising: (a) a product protein domain, (b) an intein, and (c) at least one aggregator protein domain, wherein the aggregator protein domain comprises a protein that is capable of specific association with granules of polyhydroxyalkanoate (PHA).
    Type: Application
    Filed: November 16, 2005
    Publication date: June 29, 2006
    Inventors: David Wood, Mahmoud Banki, Tillman Gerngross
  • Publication number: 20060078963
    Abstract: Cell lines having genetically modified glycosylation pathways that allow them to carry out a sequence of enzymatic reactions, which mimic the processing of glycoproteins in humans, have been developed. Recombinant proteins expressed in these engineered hosts yield glycoproteins more similar, if not substantially identical, to their human counterparts. The lower eukaryotes, which ordinarily produce high-mannose containing N-glycans, including unicellular and multicellular fungi are modified to produce N-glycans such as Man5GlcNAc2 or other structures along human glycosylation pathways.
    Type: Application
    Filed: September 30, 2005
    Publication date: April 13, 2006
    Applicant: GlycoFi, Inc.
    Inventor: Tillman Gerngross