Patents by Inventor Tim A. Fischell

Tim A. Fischell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10881458
    Abstract: An intravascular catheter for peri-vascular and/or peri-urethral tissue ablation includes multiple needles advanced through supported guide tubes which expand around a central axis to engage the interior surface of the wall of the renal artery or other vessel of a human body allowing the injection an ablative fluid for ablating tissue, and/or nerve fibers in the outer layer or deep to the outer layer of the vessel, or in prostatic tissue. The system may also include a means to limit and/or adjust the depth of penetration of the ablative fluid into and beyond the tissue of the vessel wall. The catheter may also include structures which provide radial and/or lateral support to the guide tubes so that the guide tubes expand uniformly and maintain their position against the interior surface of the vessel wall as the sharpened injection needles are advanced to penetrate into the vessel wall.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: January 5, 2021
    Assignee: Ablative Solutions, Inc.
    Inventors: David R. Fischell, Tim A. Fischell, Robert Ryan Ragland, Darrin James Kent, Andy Edward Denison, Eric Thomas Johnson, Jeff Alan Burke, Christopher Scott Hayden
  • Patent number: 10849685
    Abstract: An intravascular catheter for peri-vascular and/or peri-urethral tissue ablation includes multiple penetrators advanced through supported guide tubes which expand around a central axis to engage the interior surface of the wall of the renal artery or other vessel of a human body allowing the injection an ablative fluid for ablating tissue, nerve sensing, nerve stimulation, or ablation by application of energy. The catheter can include a proximal handle for the advancement of guide tubes and penetrators.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: December 1, 2020
    Assignee: Ablative Solutions, Inc.
    Inventors: Andy Edward Denison, David R. Fischell, Tim A. Fischell, Darrin James Kent, Nicole Haratani
  • Publication number: 20200269015
    Abstract: A catheter-based/intravascular ablation (denervation) system includes a multiplicity of needles which expand open around a central axis to engage the wall of a blood vessel, or the wall of the left atrium, allowing the injection of a cytotoxic or/or neurotoxic solution for ablating conducting tissue, or nerve fibers around the ostium of the pulmonary vein, or circumferentially in or just beyond the outer layer of the renal artery. The expandable needle delivery system is formed with self-expanding materials and include structures, near the end portion of the needles, or using separate guide tubes. The system also includes means to limit and/or adjust the depth of penetration of the ablative fluid into the tissue of the wall of the targeted blood vessel. The preferred embodiment of the catheter delivered through the vascular system of a patient includes a multiplicity of expandable guide tubes that engage the wall of a blood vessel.
    Type: Application
    Filed: February 28, 2020
    Publication date: August 27, 2020
    Inventors: David R. Fischell, Tim A. Fischell
  • Patent number: 10736656
    Abstract: An intravascular catheter for peri-vascular or peri-urethral tissue ablation includes multiple needles advanced through supported guide tubes which expand around a central axis to engage the interior surface of the wall of the renal artery or other vessel of a human body allowing the injection an ablative fluid for ablating tissue, or nerve fibers in the outer layer or deep to the outer layer of the vessel, or in prostatic tissue. A method can involve injection/infusion of the ablative fluid over an extended time period of at least 10 seconds or with two injections at two different penetration depths to reduce or eliminate patient pain during ablation.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: August 11, 2020
    Assignee: Ablative Solutions
    Inventors: David R. Fischell, Tim A. Fischell, Robert Ryan Ragland, Darrin James Kent, Andy Edward Denison, Eric Thomas Johnson, Jeff Alan Burke, Christopher Scott Hayden, Robert E. Fischell
  • Patent number: 10736524
    Abstract: An intravascular catheter for peri-vascular nerve activity sensing or measurement includes multiple needles advanced through supported guide tubes (needle guiding elements) which expand with open ends around a central axis to contact the interior surface of the wall of the renal artery or other vessel of a human body allowing the needles to be advanced though the vessel wall into the perivascular space. The system also may include means to limit and/or adjust the depth of penetration of the needles. The catheter also includes structures which provide radial and lateral support to the guide tubes so that the guide tubes open uniformly and maintain their position against the interior surface of the vessel wall as the sharpened needles are advanced to penetrate into the vessel wall.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 11, 2020
    Assignee: Ablative Solutions, Inc.
    Inventors: David R. Fischell, Tim A. Fischell, Vartan Ghazarossian, Steven Almany
  • Publication number: 20200197663
    Abstract: A catheter-based/intravascular ablation (denervation) system includes a multiplicity of needles which expand open around a central axis to engage the wall of a blood vessel, or the wall of the left atrium, allowing the injection of a cytotoxic or/or neurotoxic solution for ablating conducting tissue, or nerve fibers around the ostium of the pulmonary vein, or circumferentially in or just beyond the outer layer of the renal artery. The expandable needle delivery system is formed with self-expanding materials and include structures, near the end portion of the needles, or using separate guide tubes. The system also includes means to limit and/or adjust the depth of penetration of the ablative fluid into the tissue of the wall of the targeted blood vessel. The preferred embodiment of the catheter delivered through the vascular system of a patient includes a multiplicity of expandable guide tubes that engage the wall of a blood vessel.
    Type: Application
    Filed: November 20, 2019
    Publication date: June 25, 2020
    Inventors: David R. Fischell, Tim A. Fischell
  • Publication number: 20200188007
    Abstract: An intravascular catheter for peri-vascular and/or peri-urethral tissue ablation includes multiple needles advanced through supported guide tubes which expand with open ends around a central axis to engage the interior surface of the wall of the renal artery or other vessel of a human body allowing the injection an ablative fluid for ablating tissue, and/or nerve fibers in the outer layer or deep to the outer layer of the vessel, or in prostatic tissue. The system also includes means to limit and/or adjust the depth of penetration of the ablative fluid into and beyond the tissue of the vessel wall. The preferred embodiment of the catheter includes structures which provide radial and lateral support to the guide tubes so that the guide tubes open uniformly and maintain their position against the interior surface of the vessel wall as the sharpened injection needles are advanced to penetrate into the vessel wall.
    Type: Application
    Filed: September 5, 2019
    Publication date: June 18, 2020
    Inventors: David R. Fischell, Tim A. Fischell, Robert Ryan Ragland, Darrin James Kent, Andy Edward Denison, Eric Thomas Johnson, Jeff Alan Burke, Christopher Scott Hayden
  • Publication number: 20200179661
    Abstract: The subject guide catheter extension/pre-dilatation system includes an outer delivery sheath, an inner member extending within the sheath, and a mechanism for engagement/disengagement of the inner member to/from the sheath. The inner member is configured with a tapered distal tip having a delivery micro-catheter and a pre-dilatation balloon member attached to the tapered distal tip in proximity to the micro-catheter. The outer delivery sheath and the inner member are modified for different engagement/disengagement mechanisms operation. The delivery micro-catheter provides for an improved crossability for the balloon member to the treatment site in an atraumatic, expedited and convenient fashion. During the cardiac procedure, a guidewire and a guide catheter are advanced to the vicinity of the treatment site within a blood vessel.
    Type: Application
    Filed: February 18, 2020
    Publication date: June 11, 2020
    Inventors: TIM A. FISCHELL, FRANK S. SALTIEL
  • Publication number: 20200163566
    Abstract: An intravascular catheter for nerve activity ablation and/or sensing includes one or more needles advanced through supported guide tubes (needle guiding elements) which expand to contact the interior surface of the wall of the renal artery or other vessel of a human body allowing the needles to be advanced though the vessel wall into the extra-luminal tissue including the media, adventitia and periadvential space. The catheter also includes structures which provide radial and lateral support to the guide tubes so that the guide tubes open uniformly and maintain their position against the interior surface of the vessel wall as the sharpened needles are advanced to penetrate into the vessel wall. Electrodes near the distal ends of the needles allow sensing of nerve activity before and after attempted renal denervation. In a combination embodiment ablative energy or fluid is delivered from the needles in or near the adventitia to ablate nerves outside of the media while sparing nerves within the media.
    Type: Application
    Filed: September 20, 2019
    Publication date: May 28, 2020
    Inventors: David R. Fischell, Tim A. Fischell, Vartan Ghazarossian, Steven Almany, Michael Sasha John
  • Patent number: 10576246
    Abstract: A catheter-based/intravascular ablation (denervation) system includes a multiplicity of needles which expand open around a central axis to engage the wall of a blood vessel, or the wall of the left atrium, allowing the injection of a cytotoxic or/or neurotoxic solution for ablating conducting tissue, or nerve fibers around the ostium of the pulmonary vein, or circumferentially in or just beyond the outer layer of the renal artery. The expandable needle delivery system is formed with self-expanding materials and include structures, near the end portion of the needles, or using separate guide tubes. The system also includes means to limit and/or adjust the depth of penetration of the ablative fluid into the tissue of the wall of the targeted blood vessel. The preferred embodiment of the catheter delivered through the vascular system of a patient includes a multiplicity of expandable guide tubes that engage the wall of a blood vessel.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: March 3, 2020
    Assignee: Ablative Solutions, Inc.
    Inventors: David R. Fischell, Tim A. Fischell
  • Publication number: 20200061348
    Abstract: An intravascular catheter for peri-vascular and/or peri-urethral tissue ablation includes multiple needles advanced through supported guide tubes which expand around a central axis to engage the interior surface of the wall of the renal artery or other vessel of a human body allowing the injection an ablative fluid for ablating tissue, and/or nerve fibers in the outer layer or deep to the outer layer of the vessel, or in prostatic tissue. The system may also include a means to limit and/or adjust the depth of penetration of the ablative fluid into and beyond the tissue of the vessel wall. The catheter may also include structures which provide radial and/or lateral support to the guide tubes so that the guide tubes expand uniformly and maintain their position against the interior surface of the vessel wall as the sharpened injection needles are advanced to penetrate into the vessel wall.
    Type: Application
    Filed: July 12, 2019
    Publication date: February 27, 2020
    Inventors: David R. Fischell, Tim A. Fischell, Robert Ryan Ragland, Darrin James Kent, Andy Edward Denison, Eric Thomas Johnson, Jeff Alan Burke, Christopher Scott Hayden, Robert E. Fischell
  • Publication number: 20200022751
    Abstract: An intravascular catheter for peri-vascular and/or peri-urethral tissue ablation includes multiple penetrators advanced through supported guide tubes which expand around a central axis to engage the interior surface of the wall of the renal artery or other vessel of a human body allowing the injection an ablative fluid for ablating tissue, nerve sensing, nerve stimulation, or ablation by application of energy. The catheter can include a proximal handle for the advancement of guide tubes and penetrators.
    Type: Application
    Filed: July 18, 2018
    Publication date: January 23, 2020
    Inventors: Andy Edward Denison, David R. Fischell, Tim A. Fischell, Darrin James Kent, Nicole Haratani
  • Patent number: 10485951
    Abstract: A catheter-based/intravascular ablation (denervation) system includes a multiplicity of needles which expand open around a central axis to engage the wall of a blood vessel, or the wall of the left atrium, allowing the injection of a cytotoxic or/or neurotoxic solution for ablating conducting tissue, or nerve fibers around the ostium of the pulmonary vein, or circumferentially in or just beyond the outer layer of the renal artery. The expandable needle delivery system is formed with self-expanding materials and include structures, near the end portion of the needles, or using separate guide tubes. The system also includes means to limit and/or adjust the depth of penetration of the ablative fluid into the tissue of the wall of the targeted blood vessel. The preferred embodiment of the catheter delivered through the vascular system of a patient includes a multiplicity of expandable guide tubes that engage the wall of a blood vessel.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: November 26, 2019
    Assignee: Ablative Solutions, Inc.
    Inventors: David R. Fischell, Tim A. Fischell
  • Patent number: 10420481
    Abstract: An intravascular catheter for nerve activity ablation and/or sensing includes one or more needles advanced through supported guide tubes (needle guiding elements) which expand to contact the interior surface of the wall of the renal artery or other vessel of a human body allowing the needles to be advanced though the vessel wall into the extra-luminal tissue including the media, adventitia and periadvential space. The catheter also includes structures which provide radial and lateral support to the guide tubes so that the guide tubes open uniformly and maintain their position against the interior surface of the vessel wall as the sharpened needles are advanced to penetrate into the vessel wall. Electrodes near the distal ends of the needles allow sensing of nerve activity before and after attempted renal denervation. In a combination embodiment ablative energy or fluid is delivered from the needles in or near the adventitia to ablate nerves outside of the media while sparing nerves within the media.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: September 24, 2019
    Assignee: Ablative Solutions, Inc.
    Inventors: David R. Fischell, Tim A. Fischell, Vartan Ghazarossian, Steven Almany, Michael Sasha John
  • Patent number: 10405912
    Abstract: An intravascular catheter for peri-vascular or peri-urethral tissue ablation includes multiple needles advanced through supported guide tubes which expand with open ends around a central axis to engage the interior surface of the wall of the renal artery or other vessel of a human body allowing the injection an ablative fluid for ablating tissue, such as nerve fibers in the outer layer or deep to the outer layer of the vessel, or in prostatic tissue. The system also controls the depth of penetration of the ablative fluid into and beyond the tissue of the vessel wall. The catheter includes structures which provide radial and lateral support to the guide tubes so that the guide tubes open uniformly and maintain their position against the interior surface of the vessel wall as the sharpened injection needles are advanced to penetrate into the vessel wall.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: September 10, 2019
    Assignee: Ablative Solutions, Inc.
    Inventors: David R. Fischell, Tim A. Fischell, Robert Ryan Ragland, Darrin James Kent, Andy Edward Denison, Eric Thomas Johnson, Jeff Alan Burke, Christopher Scott Hayden
  • Publication number: 20190269435
    Abstract: An intravascular catheter for peri-vascular and/or peri-urethral tissue ablation includes multiple needles advanced through supported guide tubes which expand around a central axis to engage the interior surface of the wall of the renal artery or other vessel of a human body allowing the injection an ablative fluid for ablating tissue, and/or nerve fibers in the outer layer or deep to the outer layer of the vessel, or in prostatic tissue. The system may also include a means to limit and/or adjust the depth of penetration of the ablative fluid into and beyond the tissue of the vessel wall. The catheter may also include structures which provide radial and/or lateral support to the guide tubes so that the guide tubes expand uniformly and maintain their position against the interior surface of the vessel wall as the sharpened injection needles are advanced to penetrate into the vessel wall.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 5, 2019
    Inventors: David R. Fischell, Tim A. Fischell, Robert Ryan Ragland, Darrin James Kent, Andy Edward Denison, Eric Thomas Johnson, Jeff Alan Burke, Christopher Scott Hayden, Robert E. Fischell
  • Publication number: 20190255297
    Abstract: The subject guide catheter extension system with a micro-catheter delivery catheter includes an outer sheath, an inner member extending within the sheath, and a mechanism for engagement/disengagement of the inner member to/from the sheath. Several mechanisms of engagement/disengagement between the inner and outer members are provided including a friction mechanism, threaded mechanism, pull away sheath, and engagement/disengagement mechanism for pusher's handles. The sheath and the inner member are modified for different engagement/disengagement mechanisms operation. A micro-catheter delivery system provides for an improved atraumatic crossability to the treatment site in an expedited and simplified fashion. During a procedure, a guidewire along with a guide catheter are advanced to the vicinity of the treatment site within a blood vessel.
    Type: Application
    Filed: February 20, 2018
    Publication date: August 22, 2019
    Inventors: TIM A. FISCHELL, FRANK S. SALTIEL
  • Publication number: 20190255299
    Abstract: The subject guide catheter extension/pre-dilatation system includes an outer delivery sheath, an inner member extending within the sheath, and a mechanism for engagement/disengagement of the inner member to/from the sheath. The inner member is configured with a tapered distal tip having a delivery micro-catheter and a pre-dilatation balloon member attached to the tapered distal tip. The guidewire and a guide catheter are advanced to the vicinity of the treatment site within a blood vessel. Subsequently, the inner member and outer delivery sheath, in their engaged configuration, are advanced along the guidewire inside the guide catheter towards the site of treatment. At the treatment site, the balloon member is inflated for pre-dilatation treatment. The inner member is disengaged and retracted from the outer delivery sheath, and a stent is delivered to the treatment site.
    Type: Application
    Filed: September 17, 2018
    Publication date: August 22, 2019
    Inventors: TIM A. FISCHELL, FRANK S. SALTIEL
  • Patent number: 10350392
    Abstract: An intravascular catheter for peri-vascular or peri-urethral tissue ablation includes multiple needles advanced through supported guide tubes which expand around a central axis to engage the interior surface of the wall of the renal artery or other vessel of a human body allowing the injection an ablative fluid for ablating tissue, such as nerve fibers in the outer layer or deep to the outer layer of the vessel, or in prostatic tissue. The system may also control the depth of penetration of the ablative fluid into and beyond the tissue of the vessel wall. The catheter may also include structures which provide radial or lateral support to the guide tubes so that the guide tubes expand uniformly and maintain their position against the interior surface of the vessel wall as the sharpened injection needles are advanced to penetrate into the vessel wall.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: July 16, 2019
    Assignee: Ablative Solutions, Inc.
    Inventors: David R. Fischell, Tim A. Fischell, Robert Ryan Ragland, Darrin James Kent, Andy Edward Denison, Eric Thomas Johnson, Jeff Alan Burke, Christopher Scott Hayden, Robert E. Fischell
  • Publication number: 20190201070
    Abstract: At the present time, physicians often treat patients with atrial fibrillation (AF) using radiofrequency (RF) catheter systems to ablate conducting tissue in the wall of the Left Atrium of the heart around the ostium of the pulmonary veins. These systems are expensive and take time consuming to use. The present invention circular ablation system CAS includes a multiplicity of expandable needles that can be expanded around a central axis and positioned to inject a fluid like ethanol to ablate conductive tissue in a ring around the ostium of a pulmonary vein quickly and without the need for expensive capital equipment. The expansion of the needles is accomplished by self-expanding or balloon expandable structures. The invention includes centering means so that the needles will be situated in a pattern surrounding the outside of the ostium of a vein. Also included are members that limit the distance of penetration of the needles into the wall of the left atrium, or the aortic wall.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 4, 2019
    Inventors: David R. Fischell, Tim A. Fischell