Patents by Inventor Tim A. Fischell

Tim A. Fischell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150119875
    Abstract: An intravascular catheter for peri-vascular nerve activity ablation and/or sensing includes multiple needles advanced through supported guide tubes (needle guiding elements) which expand with open ends around a central axis to contact the interior surface of the wall of the renal artery or other vessel of a human body allowing the needles to be advanced though the vessel wall into the perivascular space. The catheter also includes structures which provide radial and lateral support to the guide tubes so that the guide tubes open uniformly and maintain their position against the interior surface of the vessel wall as the sharpened needles are advanced to penetrate into the vessel wall. Ablative energy or fluid is delivered from the needles in or near the adventitia to ablate nerves outside of the media while sparing nerves within the media.
    Type: Application
    Filed: October 25, 2013
    Publication date: April 30, 2015
    Applicant: Ablative Solutions, Inc.
    Inventors: David R. Fischell, Tim A. Fischell, Vartan Ghazarossian, Steven Almany
  • Publication number: 20150119674
    Abstract: An intravascular catheter for peri-vascular nerve activity sensing or measurement includes multiple needles advanced through supported guide tubes (needle guiding elements) which expand with open ends around a central axis to contact the interior surface of the wall of the renal artery or other vessel of a human body allowing the needles to be advanced though the vessel wall into the perivascular space. The system also may include means to limit and/or adjust the depth of penetration of the needles. The catheter also includes structures which provide radial and lateral support to the guide tubes so that the guide tubes open uniformly and maintain their position against the interior surface of the vessel wall as the sharpened needles are advanced to penetrate into the vessel wall.
    Type: Application
    Filed: October 25, 2013
    Publication date: April 30, 2015
    Applicant: Ablative Solutions, Inc.
    Inventors: David R. Fischell, Tim A. Fischell, Vartan Ghazarossian, Steven Almany
  • Patent number: 8965494
    Abstract: Disclosed is a system for the detection of cardiac events that includes an implanted device called a cardiosaver, a physician's programmer and an external alarm system. The system is designed to provide early detection of cardiac events such as acute myocardial infarction or exercise induced myocardial ischemia caused by an increased heart rate or exertion. The system can also alert the patient with a less urgent alarm if a heart arrhythmia is detected. Using different algorithms, the cardiosaver can detect a change in the patient's electrogram that is indicative of a cardiac event within five minutes after it occurs and then automatically warn the patient that the event is occurring. To provide this warning, the system includes an internal alarm sub-system (internal alarm means) within the cardiosaver and/or an external alarm system (external alarm means) which are activated after the ST segment of the electrogram exceeds a preset threshold.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: February 24, 2015
    Assignee: Angel Medical Systems, Inc.
    Inventors: David R. Fischell, Tim A. Fischell, Jonathan Harwood, Robert E. Fischell, Steven R. Johnson
  • Publication number: 20150018658
    Abstract: Disclosed is a system for the detection of cardiac events that includes an implanted device called a cardiosaver, a physician's programmer and an external alarm system. The system is designed to provide early detection of cardiac events such as acute myocardial infarction or exercise induced myocardial ischemia caused by an increased heart rate or exertion. The system can also alert the patient with a less urgent alarm if a heart arrhythmia is detected. Using different algorithms, the cardiosaver can detect a change in the patient's electrogram that is indicative of a cardiac event within five minutes after it occurs and then automatically warn the patient that the event is occurring. To provide this warning, the system includes an internal alarm sub-system (internal alarm means) within the cardiosaver and/or an external alarm system (external alarm means) which are activated after the ST segment of the electrogram exceeds a preset threshold.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Inventors: DAVID R. FISCHELL, TIM A. FISCHELL, JONATHAN HARWOOD, ROBERT E. FISCHELL, STEVEN R. JOHNSON
  • Publication number: 20150005719
    Abstract: An intravascular catheter for peri-vascular and/or peri-urethral tissue ablation includes multiple needles advanced through supported guide tubes which expand around a central axis to engage the interior surface of the wall of the renal artery or other vessel of a human body allowing the injection an ablative fluid for ablating tissue, and/or nerve fibers in the outer layer or deep to the outer layer of the vessel, or in prostatic tissue. The system may also include a means to limit and/or adjust the depth of penetration of the ablative fluid into and beyond the tissue of the vessel wall. The catheter may also include structures which provide radial and/or lateral support to the guide tubes so that the guide tubes expand uniformly and maintain their position against the interior surface of the vessel wall as the sharpened injection needles are advanced to penetrate into the vessel wall.
    Type: Application
    Filed: June 30, 2014
    Publication date: January 1, 2015
    Inventors: David R. Fischell, Tim A. Fischell, Robert Ryan Ragland, Darrin James Kent, Andy Edward Denison, Eric Thomas Johnson, Jeff Alan Burke, Christopher Scott Hayden, Robert E. Fischell
  • Publication number: 20140378906
    Abstract: An intravascular catheter for peri-vascular and/or peri-urethral tissue ablation includes multiple needles advanced through supported guide tubes which expand around a central axis to engage the interior surface of the wall of the renal artery or other vessel of a human body allowing the injection an ablative fluid for ablating tissue, and/or nerve fibers in the outer layer or deep to the outer layer of the vessel, or in prostatic tissue. The system may also include a means to limit and/or adjust the depth of penetration of the ablative fluid into and beyond the tissue of the vessel wall. The catheter may also include structures which provide radial and/or lateral support to the guide tubes so that the guide tubes expand uniformly and maintain their position against the interior surface of the vessel wall as the sharpened injection needles are advanced to penetrate into the vessel wall.
    Type: Application
    Filed: June 30, 2014
    Publication date: December 25, 2014
    Inventors: David R. Fischell, Tim A. Fischell, Robert Ryan Ragland, Darrin James Kent, Andy Edward Denison, Eric Thomas Johnson, Jeff Alan Burke, Christopher Scott Hayden, Robert E. Fischell
  • Publication number: 20140358079
    Abstract: A catheter-based/intravascular ablation (denervation) system includes a multiplicity of needles which expand open around a central axis to engage the wall of a blood vessel, or the wall of the left atrium, allowing the injection of a cytotoxic or/or neurotoxic solution for ablating conducting tissue, or nerve fibers around the ostium of the pulmonary vein, or circumferentially in or just beyond the outer layer of the renal artery. The expandable needle delivery system is formed with self-expanding materials and include structures, near the end portion of the needles, or using separate guide tubes. The system also includes means to limit and/or adjust the depth of penetration of the ablative fluid into the tissue of the wall of the targeted blood vessel. The preferred embodiment of the catheter delivered through the vascular system of a patient includes a multiplicity of expandable guide tubes that engage the wall of a blood vessel.
    Type: Application
    Filed: August 22, 2012
    Publication date: December 4, 2014
    Applicant: ABLATIVE SOLUTIONS, INC.
    Inventors: David R. Fischell, Tim A. Fischell
  • Publication number: 20140316351
    Abstract: An intravascular catheter for peri-vascular and/or peri-urethral tissue ablation includes multiple needles advanced through supported guide tubes which expand around a central axis to engage the interior surface of the wall of the renal artery or other vessel of a human body allowing the injection an ablative fluid for ablating tissue, and/or nerve fibers in the outer layer or deep to the outer layer of the vessel, or in prostatic tissue. The system may also include a means to limit and/or adjust the depth of penetration of the ablative fluid into and beyond the tissue of the vessel wall. The catheter may also include structures which provide radial and/or lateral support to the guide tubes so that the guide tubes expand uniformly and maintain their position against the interior surface of the vessel wall as the sharpened injection needles are advanced to penetrate into the vessel wall.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Inventors: David R. Fischell, Tim A. Fischell, Robert Ryan Ragland, Darrin James Kent, Andy Edward Denison, Eric Thomas Johnson, Jeff Alan Burke, Christopher Scott Hayden, Robert E. Fischell
  • Publication number: 20140288587
    Abstract: Dilators and sheaths for use in minimally invasive vascular therapy are disclosed. In some embodiments, the dilators include a slot that accesses a guidewire lumen within the dilator. These slots facilitate rapid exchange of one dilator for another. In another embodiment, a dilator is sufficiently stiff to facilitate entry, but also designed to facilitate placement of the dilator along a tortuous path.
    Type: Application
    Filed: June 6, 2014
    Publication date: September 25, 2014
    Inventors: Robert E. Fischell, Tim A. Fischell
  • Publication number: 20140236103
    Abstract: An intravascular catheter for peri-vascular and/or peri-urethral tissue ablation includes multiple needles advanced through supported guide tubes which expand around a central axis to engage the interior surface of the wall of the renal artery or other vessel of a human body allowing the injection an ablative fluid for ablating tissue, and/or nerve fibers in the outer layer or deep to the outer layer of the vessel, or in prostatic tissue. The system may also include a means to limit and/or adjust the depth of penetration of the ablative fluid into and beyond the tissue of the vessel wall. The catheter may also include structures which provide radial and/or lateral support to the guide tubes so that the guide tubes expand uniformly and maintain their position against the interior surface of the vessel wall as the sharpened injection needles are advanced to penetrate into the vessel wall.
    Type: Application
    Filed: April 30, 2014
    Publication date: August 21, 2014
    Applicant: Ablative Solutions, Inc.
    Inventors: David R. Fischell, Tim A. Fischell, Robert Ryan Ragland, Darrin James Kent, Andy Edward Denison, Eric Thomas Johnson, Jeff Alan Burke, Christopher Scott Hayden, Robert E. Fischell
  • Patent number: 8747452
    Abstract: A method for implanting a balloon expandable stent at a site within a passageway of a curved coronary article. The stent includes at least two longitudinally spaced apart circumferential rings. At least one longitudinally extending connector extends between adjacent rings. The connector has at least one turn back portion that can expand or contract in length while being passed through a curved passageway. The stent is disposed on a stent delivery catheter having an inflatable balloon. The stent delivery catheter and the stent is delivered through the passageway to the site of implementation with the connector member expanding or contracting in length to facilitate delivery and placement of the stent. The stent is expanded at the site of implantation by inflating the balloon to force the stent radially outward against the wall of the coronary artery.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: June 10, 2014
    Inventors: Robert E. Fischell, David R. Fischell, Tim A. Fischell
  • Patent number: 8740849
    Abstract: An intravascular catheter for peri-vascular and/or peri-urethral tissue ablation includes multiple needles advanced through supported guide tubes which expand with open ends around a central axis to engage the interior surface of the wall of the renal artery or other vessel of a human body allowing the injection an ablative fluid for ablating tissue, and/or nerve fibers in the outer layer or deep to the outer layer of the vessel, or in prostatic tissue. The system also includes means to limit and/or adjust the depth of penetration of the ablative fluid into and beyond the tissue of the vessel wall. The preferred embodiment of the catheter includes structures which provide radial and lateral support to the guide tubes so that the guide tubes open uniformly and maintain their position against the interior surface of the vessel wall as the sharpened injection needles are advanced to penetrate into the vessel wall.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: June 3, 2014
    Assignee: Ablative Solutions, Inc.
    Inventors: David R. Fischell, Tim A. Fischell, Robert Ryan Ragland, Darrin James Kent, Andy Edward Denison, Eric Thomas Johnson, Jeff Alan Burke, Christopher Scott Hayden, Robert E. Fischell
  • Publication number: 20140121644
    Abstract: An intravascular catheter for peri-vascular and/or peri-urethral tissue ablation includes multiple needles advanced through supported guide tubes which expand with open ends around a central axis to engage the interior surface of the wall of the renal artery or other vessel of a human body allowing the injection an ablative fluid for ablating tissue, and/or nerve fibers in the outer layer or deep to the outer layer of the vessel, or in prostatic tissue. The system also includes means to limit and/or adjust the depth of penetration of the ablative fluid into and beyond the tissue of the vessel wall. The preferred embodiment of the catheter includes structures which provide radial and lateral support to the guide tubes so that the guide tubes open uniformly and maintain their position against the interior surface of the vessel wall as the sharpened injection needles are advanced to penetrate into the vessel wall.
    Type: Application
    Filed: December 4, 2013
    Publication date: May 1, 2014
    Applicant: Ablative Solutions, Inc.
    Inventors: David R. Fischell, Tim A. Fischell, Robert Ryan Ragland, Darrin James Kent, Andy Edward Denison, Eric Thomas Johnson, Jeff Alan Burke, Christopher Scott Hayden
  • Publication number: 20140121641
    Abstract: An intravascular catheter for peri-vascular and/or peri-urethral tissue ablation includes multiple needles advanced through guide tubes which may be supported by an expandable balloon. The guide tubes expand with open ends around a central axis to engage the interior surface of the wall of the renal artery or other vessel of a human body allowing the injection an ablative fluid for ablating tissue, and/or nerve fibers in the outer layer or deep to the outer layer of the vessel, or in prostatic tissue. The diameter of the inflated balloon is less than the inside diameter of the vessel, allowing perfusion across the inflated balloon and guide tubes.
    Type: Application
    Filed: November 20, 2013
    Publication date: May 1, 2014
    Applicant: Ablative Solutions, Inc.
    Inventors: David R. Fischell, Tim A. Fischell, Darrin James Kent, Andy Edward Denison
  • Publication number: 20140107454
    Abstract: Disclosed is a system for the detection of cardiac events that includes an implanted device called a cardiosaver, a physician's programmer and an external alarm system. The system is designed to provide early detection of cardiac events such as acute myocardial infarction or exercise induced myocardial ischemia caused by an increased heart rate or exertion. The system can also alert the patient with a less urgent alarm if a heart arrhythmia is detected. Using different algorithms, the cardiosaver can detect a change in the patient's electrogram that is indicative of a cardiac event within five minutes after it occurs and then automatically warn the patient that the event is occurring. To provide this warning, the system includes an internal alarm sub-system (internal alarm means) within the cardiosaver and/or an external alarm system (external alarm means) which are activated after the ST segment of the electrogram exceeds a preset threshold.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 17, 2014
    Applicant: Angel Medical Systems, Inc.
    Inventors: DAVID R. FISCHELL, TIM A. FISCHELL, JONATHAN HARWOOD, ROBERT E. FISCHELL, STEVEN R. JOHNSON
  • Patent number: 8663190
    Abstract: At the present time, physicians often treat patients with atrial fibrillation (AF) using radiofrequency (RF) catheter systems to ablate conducting tissue in the wall of the Left Atrium of the heart around the ostium of the pulmonary veins. These systems are expensive and take time consuming to use. The present invention circular ablation system CAS includes a multiplicity of expandable needles that can be expanded around a central axis and positioned to inject a fluid like ethanol to ablate conductive tissue in a ring around the ostium of a pulmonary vein quickly and without the need for expensive capital equipment. The expansion of the needles is accomplished by self-expanding or balloon expandable structures. The invention includes centering means so that the needles will be situated in a pattern surrounding the outside of the ostium of a vein. Also included are members that limit the distance of penetration of the needles into the wall of the left atrium.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: March 4, 2014
    Assignee: Ablative Solutions, Inc.
    Inventors: David R. Fischell, Tim A. Fischell
  • Publication number: 20140046298
    Abstract: At the present time, physicians often treat patients with atrial fibrillation (AF) using radiofrequency (RF) catheter systems to ablate conducting tissue in the wall of the Left Atrium of the heart around the ostium of the pulmonary veins. These systems are expensive and take time consuming to use. The present invention circular ablation system CAS includes a multiplicity of expandable needles that can be expanded around a central axis and positioned to inject a fluid like ethanol to ablate conductive tissue in a ring around the ostium of a pulmonary vein quickly and without the need for expensive capital equipment. The expansion of the needles is accomplished by self-expanding or balloon expandable structures. The invention includes centering means so that the needles will be situated in a pattern surrounding the outside of the ostium of a vein. Also included are members that limit the distance of penetration of the needles into the wall of the left atrium.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 13, 2014
    Applicant: Ablative Solutions, Inc.
    Inventors: David R. Fischell, Tim A. Fischell
  • Patent number: 8630702
    Abstract: A system for the detection of cardiac events occurring in a human patient is provided. At least two electrodes are included in the system for obtaining an electrical signal from a patient's heart. An electrical signal processor is electrically coupled to the electrodes for processing the electrical signal and a patient alarm means is further provided and electrically coupled to the electrical signal processor. The electrical signal is acquired in the form of electrogram segments, which are categorized according to heart rate, ST segment shift and type heart rhythm (normal or abnormal). Baseline electrogram segments are tracked over time.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: January 14, 2014
    Assignee: Angel Medical Systems, Inc.
    Inventors: David R. Fischell, Tim A. Fischell, Jonathan Harwood, Robert E. Fischell, Steven R. Johnson, Bruce Hopenfeld, Michael Sasha John
  • Patent number: 8591495
    Abstract: A thin-walled introducer sheath is described. In some embodiments, the introducer sheath includes structural support components, such as wires, used in connection with a polymeric inner coating, a polymeric outer coating, or both. Further, in some embodiments, the wire components are annealed to reduce cold-work-related stresses and hardness. Use of annealed components may enable a reduction in the thickness of the polymeric outer coating in some applications.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: November 26, 2013
    Assignee: Fischell Innovations, LLC
    Inventors: Robert E. Fischell, Tim A. Fischell, David R. Fischell
  • Publication number: 20130274674
    Abstract: A catheter-based/intravascular ablation system includes needles which expand around a central axis to engage a blood vessel or left atrium wall, allowing the injection of an ablative solution for ablating conducting tissue, or nerve fibers around the ostium of the pulmonary vein or around the renal artery. The system includes means to adjust the depth of penetration into the tissue of the targeted blood vessel wall. The catheter can include expandable guide tubes that engage the blood vessel wall. Injection needles having injection egress at or near their sharpened distal end are then advanced through the guide tubes to penetrate the blood vessel wall to a prescribed depth. The ability to provide PeriVascular injection only affecting the outer layer(s) of a blood vessel without affecting the media has particular application for PeriVascular Renal Denervation (PVRD) of the sympathetic nerves which lie in or outside the adventitia of the renal artery.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 17, 2013
    Inventors: David R. Fischell, Tim A. Fischell