Patents by Inventor Tim D. Blasius

Tim D. Blasius has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9618531
    Abstract: Technologies are generally described for operating and manufacturing optomechanical accelerometers. In some examples, an optomechanical accelerometer device is described that uses a cavity resonant displacement sensor based on a zipper photonic crystal nano-cavity to measure the displacement of an integrated test mass generated by acceleration applied to the chip. The cavity-resonant sensor may be fully integrated on-chip and exhibit an enhanced displacement resolution due to its strong optomechanical coupling. The accelerometer structure may be fabricated in a silicon nitride thin film and constitute a rectangular test mass flexibly suspended on high aspect ratio inorganic nitride nano-tethers under high tensile stress. By increasing the mechanical Q-factors through adjustment of tether width and tether length, the noise-equivalent acceleration (NEA) may be reduced, while maintaining a large operation bandwidth. The mechanical Q-factor may be improved with thinner (e.g., <1 micron) and longer tethers (e.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: April 11, 2017
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, UNIVERSITY OF ROCHESTER
    Inventors: Oskar Painter, Martin Winger, Qiang Lin, Alexander Krause, Tim D. Blasius
  • Publication number: 20150020590
    Abstract: Technologies are generally described for operating and manufacturing optomechanical accelerometers. In some examples, an optomechanical accelerometer device is described that uses a cavity resonant displacement sensor based on a zipper photonic crystal nano-cavity to measure the displacement of an integrated test mass generated by acceleration applied to the chip. The cavity-resonant sensor may be fully integrated on-chip and exhibit an enhanced displacement resolution due to its strong optomechanical coupling. The accelerometer structure may be fabricated in a silicon nitride thin film and constitute a rectangular test mass flexibly suspended on high aspect ratio inorganic nitride nano-tethers under high tensile stress. By increasing the mechanical Q-factors through adjustment of tether width and tether length, the noise-equivalent acceleration (NEA) may be reduced, while maintaining a large operation bandwidth. The mechanical Q-factor may be improved with thinner (e.g., <1 micron) and longer tethers (e.
    Type: Application
    Filed: March 1, 2013
    Publication date: January 22, 2015
    Inventors: Oskar Painter, Martin Winger, Qiang Lin, Alexander Krause, Tim D. Blasius