Patents by Inventor Tim Fiedler

Tim Fiedler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210002549
    Abstract: A lighting device is specified. The lighting device comprises a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; ?3.
    Type: Application
    Filed: July 13, 2020
    Publication date: January 7, 2021
    Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Gudrun Plundrich, Simon Peschke, Gregor Hoerder, Gina Maya Achrainer, Klaus Wurst
  • Publication number: 20200399370
    Abstract: The present invention provides binding agents that contain a binding domain that is specific for CD3 allowing binding to T cells and a binding domain that is specific for a tumor-associated claudin molecule and methods of using these binding agents or nucleic acids encoding therefor for treating cancer.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 24, 2020
    Inventors: Ugur Sahin, Ozlem Türeci, Christiane Stadler, Julia Holland, Hayat Bähr-Mahmud, Tim Beissert, Laura Plum, Fabrice Le Gall, Arne Jendretzki, Markus Fiedler
  • Patent number: 10865478
    Abstract: A method for producing phosphor particles with at least one first protective layer and a phosphor particles having at least one protective layer are disclosed. In an embodiment, a method includes providing phosphor particles and applying at least one first protective layer to the surface of the phosphor particles, wherein the at least of first protective layer include depositing a first starting compound by a first atomic layer deposition on the surface of the phosphor particles and depositing a second starting compound by a second atomic layer deposition on the surface of the phosphor particles.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: December 15, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Sonja Tragl, Tim Fiedler, Frank Jermann
  • Publication number: 20200332182
    Abstract: Phospher particles with a Protective Layer and a method for producing phosphor particles with a protective layer are disclosed. In an embodiment the method includes treating Si-containing and/or Al-containing phosphor with an acid solution, wherein a pH value of the acid solution is maintained within a range of pH 3.5 to pH 7 for a period of at least 1 h, wherein an Si-containing layer is formed on the phosphor particles, wherein the Si-containing layer has a higher content of Si on a surface than the phosphor particles, and/or wherein an Al-containing layer is formed on the phosphor particles, wherein the Al-containing layer has a modified content of aluminum on the surface than the phosphor particles and tempering the treated phosphor particles at a temperature of at least 100° C. thereby producing the protective layer.
    Type: Application
    Filed: June 24, 2020
    Publication date: October 22, 2020
    Inventors: Tim Fiedler, Sonja Tragl, Stefan Lange
  • Publication number: 20200291294
    Abstract: A phosphor and a method for making the phosphor are disclosed. In an embodiment a phosphor for emission of red light includes SrxCa1?xAlSiN3:Eu, wherein x is: 0.8<x?1, wherein between 0.1% and 5% inclusive of the Sr, Ca and/or Sr/Ca lattice sites are replaced by Eu, wherein, in a x-ray structure analysis, the phosphor in orthorhombic description exhibits a reflection (R) having Miller indices 1 2 1, wherein the phosphor has a structure including (Si/Al)N4 tetrahedra arranged in a 3D network, in which layers in an a-c plane are linked in a b-direction, and wherein pure Sr positions and positions having a mixed Sr/Ca population are intercalated between the network, layer by layer.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Roemer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Boenisch, Hailing Cui
  • Patent number: 10752836
    Abstract: A phosphor is disclosed. In an embodiment the phosphor includes an inorganic compound having at least one activator E and N and/or O in its empirical formula, wherein E is selected from the group consisting of Mn, Cr, Ni, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Yb, Tm, Li, Na, K, Rb, Cs and combinations thereof, and wherein the inorganic compound crystallizes in a crystal structure with the same atomic sequence as in K2Zn6O7.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: August 25, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Markus Seibald, Tim Fiedler, Dominik Baumann, Hubert Huppertz, Klaus Wurst, Gunter Heymann, Dominik Wilhelm
  • Patent number: 10738238
    Abstract: Phospher particles with a Protective Layer and a method for producing phosphor particles with a protective layer are disclosed. In an embodiment the method includes treating Si-containing and/or Al-containing phosphor with an acid solution, wherein a pH value of the acid solution is maintained within a range of pH 3.5 to pH 7 for a period of at least 1 h, wherein an Si-containing layer is formed on the phosphor particles, wherein the Si-containing layer has a higher content of Si on a surface than the phosphor particles, and/or wherein an Al-containing layer is formed on the phosphor particles, wherein the Al-containing layer has a modified content of aluminum on the surface than the phosphor particles and tempering the treated phosphor particles at a temperature of at least 100° C. thereby producing the protective layer.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: August 11, 2020
    Assignees: OSRAM OPTO SEMICONDUCTORS GMBH, OSRAM GMBH
    Inventors: Tim Fiedler, Sonja Tragl, Stefan Lange
  • Patent number: 10717780
    Abstract: The present invention provides binding agents that contain n binding domain that is specific for CD3 allowing binding to T cells and a binding domain that is specific for a tumor-associated claudin molecule and methods of using these binding agents or nucleic acids encoding therefor for treating cancer.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: July 21, 2020
    Assignees: BioNTech AG, Ganymed Pharmaceuticals GmbH, TRON—Translationale Onkologic an der Universitätsmedzin der Johannes Gutenberg-Universität Mainz gemcinnützige GmbH
    Inventors: Ugur Sahin, Ozlem Türeci, Christiane Stadler, Julia Holland, Hayat Bähr-Mahmud, Tim Beissert, Laura Plum, Fabrice Le Gall, Arne Jendretzki, Markus Fiedler
  • Patent number: 10711191
    Abstract: A phosphor and a lighting device are disclosed. In an embodiment a lighting device includes a first phosphor disposed in a beam path of the primary radiation source, wherein the first phosphor has the formula Sr(SraM1?a)Si2Al2(N,X)6:D,A,B,E,G,L, wherein element M is selected from Ca, Ba, Mg or combinations thereof, wherein element D is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals or Yb, wherein element A is selected from divalent metals different than those of the elements M and D, wherein element B is selected from trivalent metals, wherein element E is selected from monovalent metals, wherein element G is selected from tetravalent elements, wherein element L is selected from trivalent elements, wherein element X is selected from O or halogen, and wherein a parameter a is between 0.6 and 1.0.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: July 14, 2020
    Assignees: OSRAM Opto Semiconductors GmbH, OSRAM GmbH
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Patent number: 10711192
    Abstract: A lighting device is specified. The lighting device comprises a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: July 14, 2020
    Assignee: Osram Oled GmbH
    Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Gudrun Plundrich, Simon Peschke, Gregor Hoerder, Gina Maya Achrainer, Klaus Wurst
  • Patent number: 10505080
    Abstract: A lighting device is specified. The lighting device comprises a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; ?3.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: December 10, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Simon Peschke
  • Publication number: 20190322934
    Abstract: A phosphor is specified. The phosphor has the general molecular formula: (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, -E=Eu, Ce, Yb and/or Mn, XC=N and XD=C. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; 3.5?u?4; 3.5?v?4; (?0.2)?w?0.
    Type: Application
    Filed: August 10, 2017
    Publication date: October 24, 2019
    Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Simon Peschke
  • Publication number: 20190326481
    Abstract: A lighting device is specified. The lighting device comprises a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; ?3.
    Type: Application
    Filed: August 10, 2017
    Publication date: October 24, 2019
    Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Simon Peschke
  • Publication number: 20190144745
    Abstract: A phosphor is specified. The phosphor has the general molecular formula: (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, -E=Eu, Ce, Yb and/or Mn, XC?N and XD=C. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; 3.5?u?4; 3.5?v?4; (?0.2)?w?0.2 and 0?m<0.
    Type: Application
    Filed: November 28, 2018
    Publication date: May 16, 2019
    Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Gudrun Plundrich, Simon Peschke, Gregor Hoerder, Gina Maya Achrainer, Klaus Wurst
  • Publication number: 20190093011
    Abstract: A lighting device is specified. The lighting device comprises a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.
    Type: Application
    Filed: November 28, 2018
    Publication date: March 28, 2019
    Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Gudrun Plundrich, Simon Peschke, Gregor Hoerder, Gina Maya Achrainer, Klaus Wurst
  • Publication number: 20190048466
    Abstract: A method for producing phosphor particles with at least one first protective layer and a phosphor particles having at least one protective layer are disclosed. In an embodiment, a method includes providing phosphor particles and applying at least one first protective layer to the surface of the phosphor particles, wherein the at least of first protective layer include depositing a first starting compound by a first atomic layer deposition on the surface of the phosphor particles and depositing a second starting compound by a second atomic layer deposition on the surface of the phosphor particles.
    Type: Application
    Filed: March 1, 2017
    Publication date: February 14, 2019
    Inventors: Sonja Tragl, Tim Fiedler, Frank Jermann
  • Publication number: 20180312755
    Abstract: A red-emitting phosphor comprising an Eu2+ doped nitridoaluminate phosphor is provided. The red emitting phosphor comprises an emission maximum in the range of 610 to 640 nm of the electromagnetic spectrum.
    Type: Application
    Filed: November 3, 2016
    Publication date: November 1, 2018
    Applicants: OSRAM Opto Semiconductors GmbH, OSRAM Opto Semiconductors GmbH
    Inventors: Markus SEIBALD, Tim FIEDLER
  • Patent number: 10020429
    Abstract: Conversion LED emits primary radiation (peak wavelength 435 nm to 455 nm) and has a luminescent substance-containing layer positioned to intercept the primary radiation and convert it into secondary radiation. First and second luminescent substances are used. The first luminescent substance is a A3B5O12:Ce garnet type emitting yellow green having cation A=75 to 100 mol. % Lu, remainder Y and a Ce content of 1.5 to 2.9 mol. %, where B=10 to 40 mol. % Ga, remainder Al. The second luminescent substance is of the MAlSiN3:Eu calsine type which emits orange red, where M is Ca alone or at least 80% Ca and the remainder of M may be Sr, Ba, Mg, Li or Cu, in each case alone or in combination, wherein some of the Al up to 20%, can be replaced by B, and wherein N can be partially replaced by O, F, Cl, alone or in combination.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: July 10, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Frank Baumann, Norbert Boenisch, Tim Fiedler, Frank Jermann, Stefan Lange, Reiner Windisch
  • Publication number: 20180148644
    Abstract: A phosphor is disclosed. In an embodiment the phosphor includes an inorganic compound having at least one activator E and N and/or O in its empirical formula, wherein E is selected from the group consisting of Mn, Cr, Ni, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Yb, Tm, Li, Na, K, Rb, Cs and combinations thereof, and wherein the inorganic compound crystallizes in a crystal structure with the same atomic sequence as in K2Zn6O7.
    Type: Application
    Filed: May 6, 2016
    Publication date: May 31, 2018
    Inventors: Markus Seibald, Tim Fiedler, Dominik Baumann, Hubert Huppertz, Klaus Wurst, Gunter Heymann, Dominik Wilhelm
  • Patent number: 9903541
    Abstract: Various embodiments may relate to a device for providing electromagnetic radiation, including a radiation assembly for generating excitation radiation, and at least one conversion element for generating conversion radiation, which has at least one first phosphor and which is arranged at a distance to the radiation assembly in a beam path of the excitation radiation. As the first phosphor, a nitridosilicate of the type M2Si5N8:D is used, wherein D= activator and wherein M is selected from the group barium, strontium, calcium alone or in combination, wherein the mean grain size d50 of the phosphor is at least 10 ?m.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: February 27, 2018
    Assignee: OSRAM GmbH
    Inventors: Daniel Bichler, Tim Fiedler