Patents by Inventor Tim Fiedler

Tim Fiedler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240067877
    Abstract: A lighting device includes a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(X D)n:E. MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Inventors: Markus SEIBALD, Simon PESCHKE, Gregor HOERDER, Gina Maya ACHRAINER, Klaus WURST, Dominik BAUMANN, Tim FIEDLER, Stefan LANGE, Hubert HUPPERTZ, Daniel DUTZLER, Thorsten SCHROEDER, Daniel BICHLER, Gudrun PLUNDRICH
  • Patent number: 11851596
    Abstract: A lighting device is specified. The lighting device comprises a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; ?3.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: December 26, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Markus Seibald, Simon Peschke, Gregor Hoerder, Gina Maya Achrainer, Klaus Wurst, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Gudrun Plundrich
  • Patent number: 11639465
    Abstract: A phosphor is specified. The phosphor has the general molecular formula: (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, -E=Eu, Ce, Yb and/or Mn, XC?N and XD=C. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; 3.5?u?4; 3.5?v?4; (?0.2)?w?0.2 and 0?m<0.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: May 2, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Gudrun Plundrich, Simon Peschke, Gregor Hoerder, Gina Maya Achrainer, Klaus Wurst
  • Patent number: 11566174
    Abstract: A phosphor is specified. The phosphor has the general molecular formula: (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, -E=Eu, Ce, Yb and/or Mn, XC=N and XD=C. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; 3.5?u?4; 3.5?v?4; (?0.2)?w?0.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: January 31, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Biehler, Simon Peschke
  • Publication number: 20220315836
    Abstract: A lighting device is specified. The lighting device comprises a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; ?3.
    Type: Application
    Filed: June 10, 2022
    Publication date: October 6, 2022
    Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Gudrun Plundrich, Simon Peschke, Gregor Hoerder, Gina Maya Achrainer, Klaus Wurst
  • Patent number: 11453822
    Abstract: A lighting device is specified. The lighting device comprises a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; ?3.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: September 27, 2022
    Assignee: OSRAM OLED GMBH
    Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Gudrun Plundrich, Simon Peschke, Gregor Hoerder, Gina Maya Achrainer, Klaus Wurst
  • Patent number: 11441070
    Abstract: A red-emitting phosphor comprising an Eu2+ doped nitridoaluminate phosphor is provided. The red emitting phosphor comprises an emission maximum in the range of 610 to 640 nm of the electromagnetic spectrum.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: September 13, 2022
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Markus Seibald, Tim Fiedler
  • Patent number: 11292965
    Abstract: A phosphor and a method for making the phosphor are disclosed. In an embodiment a phosphor for emission of red light includes Sr(SraCa1-a)Si2Al2N6:Eu, wherein x is 0.8<x?1, wherein between 0.1% and 5% inclusive of the Sr, Ca and/or Sr/Ca lattice sites are replaced by Eu, wherein the parameter value a is between 0.6 and 1.0 inclusive, wherein the phosphor has a structure comprising (Si/Al)N4 tetrahedra arranged in a 3D network, in which layers in an a-c plane are linked in a b-direction, and wherein pure Sr positions and positions having a mixed Sr/Ca population are intercalated between the network, layer by layer.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: April 5, 2022
    Assignees: OSRAM OPTO SEMICONDUCTORS GMBH, OSRAM GMBH
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Publication number: 20210179934
    Abstract: A red-emitting phosphor comprising an Eu2+ doped nitridoaluminate phosphor is provided. The red emitting phosphor comprises an emission maximum in the range of 610 to 640 nm of the electromagnetic spectrum.
    Type: Application
    Filed: February 26, 2021
    Publication date: June 17, 2021
    Inventors: Markus SEIBALD, Tim FIEDLER
  • Patent number: 11021652
    Abstract: Phospher particles with a Protective Layer and a method for producing phosphor particles with a protective layer are disclosed. In an embodiment the method includes treating Si-containing and/or Al-containing phosphor with an acid solution, wherein a pH value of the acid solution is maintained within a range of pH 3.5 to pH 7 for a period of at least 1 h, wherein an Si-containing layer is formed on the phosphor particles, wherein the Si-containing layer has a higher content of Si on a surface than the phosphor particles, and/or wherein an Al-containing layer is formed on the phosphor particles, wherein the Al-containing layer has a modified content of aluminum on the surface than the phosphor particles and tempering the treated phosphor particles at a temperature of at least 100° C. thereby producing the protective layer.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: June 1, 2021
    Assignees: OSRAM OPTO SEMICONDUCTORS GMBH, OSRAM GMBH
    Inventors: Tim Fiedler, Sonja Tragl, Stefan Lange
  • Patent number: 10968388
    Abstract: A red-emitting phosphor comprising an Eu2+ doped nitridoaluminate phosphor is provided. The red emitting phosphor comprises an emission maximum in the range of 610 to 640 nm of the electromagnetic spectrum.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: April 6, 2021
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Markus Seibald, Tim Fiedler
  • Publication number: 20210040614
    Abstract: In an embodiment phosphor particles include one of a Si-containing phosphor or an Al-containing phosphor, wherein a surface of the phosphor particles is coated with at least one first protective layer and a second protective layer, the first protective layer being arranged above the second protective layer, wherein the second protective layer has a content of Si which is increased at least by 40 atomic % relative to a phosphor or an Al content reduced by at least 10% relative to the phosphor, and wherein the at least one first protective layer includes a molecular monolayer of one of a metal oxide, a metal nitride, a metal sulfide or a metal oxynitride.
    Type: Application
    Filed: October 27, 2020
    Publication date: February 11, 2021
    Inventors: Sonja Tragl, Tim Fiedler, Frank Jermann
  • Publication number: 20210002549
    Abstract: A lighting device is specified. The lighting device comprises a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; ?3.
    Type: Application
    Filed: July 13, 2020
    Publication date: January 7, 2021
    Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Gudrun Plundrich, Simon Peschke, Gregor Hoerder, Gina Maya Achrainer, Klaus Wurst
  • Patent number: 10865478
    Abstract: A method for producing phosphor particles with at least one first protective layer and a phosphor particles having at least one protective layer are disclosed. In an embodiment, a method includes providing phosphor particles and applying at least one first protective layer to the surface of the phosphor particles, wherein the at least of first protective layer include depositing a first starting compound by a first atomic layer deposition on the surface of the phosphor particles and depositing a second starting compound by a second atomic layer deposition on the surface of the phosphor particles.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: December 15, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Sonja Tragl, Tim Fiedler, Frank Jermann
  • Publication number: 20200332182
    Abstract: Phospher particles with a Protective Layer and a method for producing phosphor particles with a protective layer are disclosed. In an embodiment the method includes treating Si-containing and/or Al-containing phosphor with an acid solution, wherein a pH value of the acid solution is maintained within a range of pH 3.5 to pH 7 for a period of at least 1 h, wherein an Si-containing layer is formed on the phosphor particles, wherein the Si-containing layer has a higher content of Si on a surface than the phosphor particles, and/or wherein an Al-containing layer is formed on the phosphor particles, wherein the Al-containing layer has a modified content of aluminum on the surface than the phosphor particles and tempering the treated phosphor particles at a temperature of at least 100° C. thereby producing the protective layer.
    Type: Application
    Filed: June 24, 2020
    Publication date: October 22, 2020
    Inventors: Tim Fiedler, Sonja Tragl, Stefan Lange
  • Publication number: 20200291294
    Abstract: A phosphor and a method for making the phosphor are disclosed. In an embodiment a phosphor for emission of red light includes SrxCa1?xAlSiN3:Eu, wherein x is: 0.8<x?1, wherein between 0.1% and 5% inclusive of the Sr, Ca and/or Sr/Ca lattice sites are replaced by Eu, wherein, in a x-ray structure analysis, the phosphor in orthorhombic description exhibits a reflection (R) having Miller indices 1 2 1, wherein the phosphor has a structure including (Si/Al)N4 tetrahedra arranged in a 3D network, in which layers in an a-c plane are linked in a b-direction, and wherein pure Sr positions and positions having a mixed Sr/Ca population are intercalated between the network, layer by layer.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Roemer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Boenisch, Hailing Cui
  • Patent number: 10752836
    Abstract: A phosphor is disclosed. In an embodiment the phosphor includes an inorganic compound having at least one activator E and N and/or O in its empirical formula, wherein E is selected from the group consisting of Mn, Cr, Ni, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Yb, Tm, Li, Na, K, Rb, Cs and combinations thereof, and wherein the inorganic compound crystallizes in a crystal structure with the same atomic sequence as in K2Zn6O7.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: August 25, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Markus Seibald, Tim Fiedler, Dominik Baumann, Hubert Huppertz, Klaus Wurst, Gunter Heymann, Dominik Wilhelm
  • Patent number: 10738238
    Abstract: Phospher particles with a Protective Layer and a method for producing phosphor particles with a protective layer are disclosed. In an embodiment the method includes treating Si-containing and/or Al-containing phosphor with an acid solution, wherein a pH value of the acid solution is maintained within a range of pH 3.5 to pH 7 for a period of at least 1 h, wherein an Si-containing layer is formed on the phosphor particles, wherein the Si-containing layer has a higher content of Si on a surface than the phosphor particles, and/or wherein an Al-containing layer is formed on the phosphor particles, wherein the Al-containing layer has a modified content of aluminum on the surface than the phosphor particles and tempering the treated phosphor particles at a temperature of at least 100° C. thereby producing the protective layer.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: August 11, 2020
    Assignees: OSRAM OPTO SEMICONDUCTORS GMBH, OSRAM GMBH
    Inventors: Tim Fiedler, Sonja Tragl, Stefan Lange
  • Patent number: 10711191
    Abstract: A phosphor and a lighting device are disclosed. In an embodiment a lighting device includes a first phosphor disposed in a beam path of the primary radiation source, wherein the first phosphor has the formula Sr(SraM1?a)Si2Al2(N,X)6:D,A,B,E,G,L, wherein element M is selected from Ca, Ba, Mg or combinations thereof, wherein element D is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals or Yb, wherein element A is selected from divalent metals different than those of the elements M and D, wherein element B is selected from trivalent metals, wherein element E is selected from monovalent metals, wherein element G is selected from tetravalent elements, wherein element L is selected from trivalent elements, wherein element X is selected from O or halogen, and wherein a parameter a is between 0.6 and 1.0.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: July 14, 2020
    Assignees: OSRAM Opto Semiconductors GmbH, OSRAM GmbH
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Patent number: 10711192
    Abstract: A lighting device is specified. The lighting device comprises a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: July 14, 2020
    Assignee: Osram Oled GmbH
    Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Gudrun Plundrich, Simon Peschke, Gregor Hoerder, Gina Maya Achrainer, Klaus Wurst