Patents by Inventor Tim Hesse

Tim Hesse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240123545
    Abstract: A method for welding at least two aluminum-containing components is provided. Each component has a content of at least 75% by weight of aluminium. The method includes subdividing an output laser beam into multiple partial beams directed onto the components such that multiple laser spots are generated on a surface of the components, and traversing a welding contour on the surface of the components with the multiple laser spots. Laser spot centers of at least three laser spots of the multiple laser spots are arranged in a ring formation. The output laser beam is generated by a multifiber such that each laser spot of the multiple laser spots on the surface of the components has a core portion and a ring portion. The welding contour is at least partially traversed by pivoting a first mirror in a controlled manner by a scanner optical unit.
    Type: Application
    Filed: December 21, 2023
    Publication date: April 18, 2024
    Inventors: Patrick HAUG, Philipp SCHEIBLE, Nicolai SPEKER, Tim HESSE
  • Publication number: 20240109150
    Abstract: An apparatus for laser processing of a workpiece is provided. The workpiece includes a transparent material. The apparatus includes a beam shaping device for forming a focus zone from an input laser beam. The focus zone is formed in elongate fashion in relation to a longitudinal axis. The focus zone has, in a plain perpendicular to the longitudinal axis, an asymmetric cross-section with a preferred direction. The apparatus further includes an actuating device for altering the preferred direction during the laser processing of the workpiece, and a control device for controlling the actuating device based on a predefined assignment specification in order to control the preferred direction by open-loop control or closed-loop control during the laser processing of the workpiece.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: Jonas Kleiner, Tim Hesse, Daniel Flamm
  • Publication number: 20240082955
    Abstract: A method for coating a rotating surface region of a workpiece by laser build-up welding includes fusing a powdery coating material prior to impact on the workpiece in a laser beam that is directed at the surface region, capturing a spatially resolved intensity profile of thermal radiation emitted by the workpiece, comparing at least one property of the intensity profile with at least one predefined target value, and modifying at least one parameter of a coating procedure based on a result of the comparison.
    Type: Application
    Filed: November 24, 2023
    Publication date: March 14, 2024
    Inventors: Bjoern Sautter, Benedikt Wessinger, Marco Opitz, Andreas Scholz, Nicolai Speker, Tim Hesse
  • Publication number: 20240033848
    Abstract: A method for welding bar-type conductors includes arranging at least two bar-type conductors in partially overlapping fashion, and welding the at least two bar-type conductors to one another by using a processing laser beam. The processing laser beam traverses a welding contour relative to the bar-type conductors. The traversing of the welding contour includes an initial phase, a main phase and an end phase. In the initial phase, in a partial region of a beam cross section of the processing laser beam, an intensity of the processing laser beam, which is spatially averaged over the partial region, is increased over time. In the main phase, the spatially averaged intensity, which is achieved at the end of the initial phase, is kept at least substantially constant over time. In the end phase, the spatially averaged intensity, starting from the intensity at the end of the main phase, is reduced over time.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 1, 2024
    Inventors: Oliver Bocksrocker, Nicolai Speker, Tim Hesse
  • Publication number: 20240024983
    Abstract: A method for laser welding includes arranging two bar-type conductors next to one another with a partial overlap, and welding the two bar-type conductors to one another using a processing laser beam. A weld bead is formed on a common base surface of the bar-type conductors. During the welding, the processing laser beam is guided so that a welding contour is placed relative to the bar-type conductors. An advancing rate of the processing laser beam along the welding contour is selected such that the weld bead has a non-liquid oxide skin inside which liquid bar-type conductor material accumulates. The non-liquid oxide skin is partially broken open by the processing laser beam only on an upwardly facing end face of the weld bead, and remains undamaged in a surrounding region of the weld bead that extends downward from the upwardly facing end face and around the entire weld bead.
    Type: Application
    Filed: October 6, 2023
    Publication date: January 25, 2024
    Inventors: Oliver Bocksrocker, Nicolai Speker, Tim Hesse, Matthias Beranek
  • Publication number: 20240017352
    Abstract: An apparatus for laser machining a workpiece in a machining plane includes a first laser machining unit for forming a first focal zone which extends in a first main direction of extent, and at least one further laser machining unit for forming at least one further focal zone which extends in a further main direction of extent oriented transversely to the first main direction of extent. The first focal zone and the at least one further focal zone are spaced apart from one another parallel to the machining plane at a work distance. The first laser machining unit and the at least one further laser machining unit are movable in an advancement direction that is oriented parallel to the machining plane. The workpiece comprises a material that is transparent to a laser beam which respectively forms the first focal zone and the at least one further focal zone.
    Type: Application
    Filed: August 1, 2023
    Publication date: January 18, 2024
    Inventors: Tim Hesse, Daniel Flamm, Myriam Kaiser
  • Patent number: 11786989
    Abstract: Laser beam welding a workpiece includes: generating first and second beam areas on the workpiece by first and second laser beams, respectively. The beam areas are guided in a feed direction relative to the workpiece. Centroids of the beam areas are not coinciding. The first beam area runs ahead of the second beam area. A length of the first beam area, measured transversely to the feed direction, is greater than or equal to that of the second. A surface area of the first beam area is greater than that of the second. A width of the first beam area, measured in the feed direction, is greater than or equal to that of the second. A laser power of the first laser beam is greater than that of the second. The second laser beam is irradiated into a weld pool generated by the first laser beam.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: October 17, 2023
    Assignee: TRUMPF LASER- UND SYSTEMTECHNIK GMBH
    Inventors: Patrick Haug, Nicolai Speker, Marco Opitz, Tim Hesse
  • Publication number: 20230302574
    Abstract: A method for severing an at least partially transparent material includes focusing ultrashort laser pulses, as individual laser pulses and/or as pulse trains, in the material so that a resulting modification zone elongated in a beam propagation direction enters the material and penetrates at least one surface of the material. Each pulse train comprises multiple sub-laser pulses, The method further includes introducing a plurality of material modifications along a severing line into the material via the laser pulses, and severing the material along the severing line, A pulse energy of the individual laser pulses or a sum of pulse energies of the sub-laser pulses is in a range from 500 ?J to 50 mJ. A length of the modification zone in the beam propagation direction is greater than a thickness of the material.
    Type: Application
    Filed: June 2, 2023
    Publication date: September 28, 2023
    Inventors: Jonas Kleiner, Daniel Flamm, Tim Hesse, Malte Kumkar, Myriam Kaiser
  • Publication number: 20230256540
    Abstract: A method for laser welding two workpieces includes arranging a first workpiece of a thickness D1 and a second workpiece of a thickness D2 on top of one another so that the first workpiece and the second workpiece overlap in a region of overlap. Each of D1 and D2 is 400 ?m or less. The method further includes melting, using a laser beam guided along a weld seam, a material of the first workpiece over an entirety of the thickness D1 and a material of the second workpiece over only a partial thickness TD of the thickness D2 in the region of overlap, from a side of the first workpiece. The laser beam generates a vapor capillary that extends to a capillary depth KT into the first workpiece or into the first workpiece and the second workpiece, where 0.33*EST?KT?0.67*EST, with EST being a weld depth EST=D1+TD.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 17, 2023
    Inventors: Oliver Bocksrocker, Tim Hesse
  • Publication number: 20230219170
    Abstract: A method for stripping a rod-shaped conductor using laser radiation is provided. The rod-shaped conductor includes an electrically conductive core and a coating that is at least partially transparent to the laser radiation. The method includes traversing the conductor for a first time with at least one laser beam to at least partially reduce transparency of the coating, and traversing the conductor for a second time with the at least one laser beam to at least partially reduce adhesion of the coating.
    Type: Application
    Filed: March 22, 2023
    Publication date: July 13, 2023
    Inventors: Oliver Bocksrocker, Christoph Neugebauer, Tim Hesse
  • Publication number: 20230150055
    Abstract: A method for monitoring a laser welding process for welding two workpieces using a laser wavelength, in which a pulsed laser beam is directed into the workpieces so as to melt a melting volume in a region of an interface of the two workpieces in order to produce a weld seam, and in which an intensity of a process radiation emitted by the melting volume is detected. According to the method for monitoring the lase welding process, in a first step, a detected intensity profile is evaluated with regard to at least one of the following features: (i) a depth of an intensity decrease, (ii) a duration of an intensity decrease, and (iii) a renewed increase in intensity after an intensity decrease. In a second step it is determined whether or not a gap between the two workpieces was bridged during the laser welding process based on the evaluation.
    Type: Application
    Filed: January 19, 2023
    Publication date: May 18, 2023
    Inventors: Tim Hesse, Sebastian Hecker
  • Publication number: 20230146425
    Abstract: A material deposition unit includes a radiation unit designed to emit electromagnetic radiation in a directed manner onto a workpiece along a beam axis, and a powder discharge device that has multiple powder discharge units configured to discharge powder in a directed form onto the workpiece through powder-outlet openings. The material deposition unit further includes a powder division unit having multiple powder channels. A number of powder channels corresponds to a number of powder discharge units. The powder division unit is designed to distribute a central powder stream guided to a feed channel uniformly over the powder channels. Each respective powder channel is connected to a respective powder discharge unit by an exchangeable connecting element. At least one powder discharge unit has an exchangeable powder discharge element, which is elongate, has a first end and a second end, and is arranged at least partially within the corresponding powder discharge unit.
    Type: Application
    Filed: August 3, 2022
    Publication date: May 11, 2023
    Inventors: Robert Ganter, Tim Hesse, Kevin Kruse, Gerhard Link, Steven Mueller, Marco Opitz, Bjoern Sautter, Fabian Goetzelmann, Nicolai Speker, Franziska Horer, Anh-Thu Tran, Benedikt Wessinger
  • Publication number: 20230111969
    Abstract: A method for laser cutting a workpiece having a thickness of less than 6 mm includes the steps of directing a first laser beam, a second laser beam, and a gas jet at an entrance surface of the workpiece such that the first and second laser beams at least partially overlap one another on the workpiece. The first laser beam has a smaller focus diameter than the second laser beam, a beam parameter product of the first laser beam is at most 5 mm*mrad, and a power proportion of the second laser beam of a total laser power is less than 20%. A cutting kerf with a broken cutting edge is formed on the entrance surface of the workpiece.
    Type: Application
    Filed: November 8, 2022
    Publication date: April 13, 2023
    Inventors: Hamza Dounassre, Tim Hesse, Olga Kramlich, Johannes Seebach, Nicolai Speker
  • Publication number: 20230001513
    Abstract: A method for laser welding two coated workpieces includes positioning an upper workpiece and a lower workpiece on top of each other and passing a first laser beam over the upper and lower workpieces from a side of the upper workpiece so as to at least partially evaporate the respective coating of each of the workpieces on their facing sides along a depletion trace. A second laser beam is passed over the workpieces from the side of the upper workpiece so as to melt a material of the two workpieces within the depletion trace, and thereby weld the workpieces to one another. In the first laser passing, the first laser beam melts the material of the upper workpiece, so that a web of non-melted material of the upper workpiece remaining between the melted material of the upper workpiece and the facing side of the upper workpiece.
    Type: Application
    Filed: August 31, 2022
    Publication date: January 5, 2023
    Inventors: Johannes Seebach, Nicolai Speker, Adrian Wolf, Tim Hesse
  • Patent number: 11517978
    Abstract: A method for cutting workpieces of different thicknesses includes providing at least one unprocessed laser beam, selectively forming a processing laser beam from the at least one unprocessed laser beam in accordance with a thickness of the workpiece, and cutting the workpiece with the processing laser beam. Forming the processing laser beam includes selectively coupling one or more unprocessed laser beams into one or more of a plurality of parallel, non-concentric fibers of a compound fiber, the plurality of fibers of the compound fiber having different cross-sectional shapes. A laser beam characteristic of the processing laser beam exiting the compound fiber differs depending upon which fibers of the compound fiber receive the at least one unprocessed laser beam, the laser beam characteristic of the processing laser beam differing depending on the thickness.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: December 6, 2022
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventors: Tim Hesse, Tobias Kaiser
  • Patent number: 11491583
    Abstract: The disclosure relates to methods and apparatuses for controlling a cutting process in which a workpiece is cut by a high-energy beam. A process light signal is detected emanating from an interaction region of the high-energy beam with the workpiece in a first wavelength range (??1), in which at least one metallic constituent (Fe, Cr) of the workpiece has at least one emission line, and in a second wavelength range (??2), which differs from the first wavelength range, in which continuum radiation of the workpiece without emission lines is detectable. Vaporization of the at least one metallic constituent (Fe, Cr) is monitored on the basis of an intensity of the process light signal detected in the first wavelength range (??1) and on the basis of an intensity of the process light signal detected in the second wavelength range (??2).
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: November 8, 2022
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventors: Oliver Bocksrocker, Stefanie Epple, Tim Hesse
  • Publication number: 20220203470
    Abstract: A method for laser soldering includes selecting a copper-containing material as a filler material, supplying the filler material at a butt joint of two components, and melting the filler material in a main process zone by means of laser radiation in an advancement direction. The filler material in the main process zone is melted by means of laser radiation of a wavelength ?H in the blue or green spectral range with 400 nm??H?600 nm.
    Type: Application
    Filed: March 18, 2022
    Publication date: June 30, 2022
    Inventors: Oliver Bocksrocker, Nicolai Speker, Tim Hesse
  • Publication number: 20220166296
    Abstract: A method for joining copper hairpins includes providing at least two ends to be joined to one another of the copper hairpins, and joining the copper hairpins. The copper hairpins are joined by laser beam welding with a machining beam having a wavelength of less than 1000 nm.
    Type: Application
    Filed: February 11, 2020
    Publication date: May 26, 2022
    Inventors: Tim Hesse, Oliver Bocksrocker
  • Publication number: 20220126396
    Abstract: A laser welding optical apparatus includes: a laser beam source; a collimation optical unit collimating the provided laser beam; a beam splitter splitting the collimated laser beam into partial beams, the beam splitter having a first setting facility, which variably sets the splitting of the collimated laser; and a focusing optical unit focusing the partial beams onto the welding workpiece The laser beam source has a multiclad fiber having a core and ring fiber, and a second setting facility, which variably splits an input laser beam at an end of the multiclad fiber between the core and ring fiber. A second end of the multiclad fiber provides the laser beam for the collimation optical unit. The beam splitter splits the collimated laser beam among two leading and trailing partial beams. The first setting facility sets the energy distribution between the leading and the trailing partial beams.
    Type: Application
    Filed: January 6, 2022
    Publication date: April 28, 2022
    Inventors: Daniel Flamm, Patrick Haug, Tim Hesse
  • Patent number: 11229973
    Abstract: Methods for determining the quality of a weld of a workpiece welded by laser-beam welding, wherein at least a partial region of a molten pool and/or of a surrounding area of the molten pool is observed by means of a measuring system during the laser-beam welding and the quality of the weld of the welded workpiece is determined on the basis of the observation result. At least one characteristic value that correlates with molten pool oscillation of the molten pool is observed during the laser-beam welding and a measure of an amplitude of the molten pool oscillation and/or a measure of a frequency of the molten pool oscillation is determined from the observed time curve of the characteristic value. A probability and/or a frequency for the occurrence of hot cracks at the weld of the workpiece is inferred.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: January 25, 2022
    Assignee: TRUMPF Laser- und Systemtechnik GmbH
    Inventors: Patrick Haug, Tim Hesse, Steffen Kessler, Marcel Schäfer, Philipp Scheible