Patents by Inventor Tim Hopper

Tim Hopper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9632203
    Abstract: Methods and systems are provided for tools having non-resonant circuits for analyzing a formation and/or a sample. For example, nuclear magnetic resonance and resistivity tools can make use of a non-resonant excitation coil and/or a detection coil. These coils can achieve desired frequencies by the use of switches, thereby removing the requirement of tuning circuits that are typical in conventional tools.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: April 25, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Tim Hopper, David G Cory, Julius Kusuma, Yi-Qiao Song, Martin D. Hurlimann, Martin E. Poitzsch
  • Patent number: 8941383
    Abstract: A method and system for determining a geometry of a borehole includes forming an nuclear magnetic resonance (NMR) caliper with a plurality of coils and coupling the NMR caliper to a borehole assembly. The NMR caliper may be calibrated for porosity and the T2 of the drilling mud, prior to drilling, at the surface. After drilling commences, scans of the borehole may be conducted with each coil of the NMR caliper. Each scan may include propagating RF energy across a range of frequencies with each coil in order to excite a NMR signal at varying depths. Borehole wall distances from the NMR caliper may be determined by reviewing a plurality of T2 distributions from CPMG measurements derived from the scans. In some embodiments, borehole wall distances from the NMR caliper may be determined by reviewing porosity values derived from the scans.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: January 27, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Tim Hopper, Nicholas J. Heaton, David T. Oliver, Luis E. Depavia, Yi-Qiao Song, Martin D. Hurlimann
  • Patent number: 8860413
    Abstract: Methods and systems are provided that enable logging while drilling NMR measurements to be made with a tool having magnets with positions adjustable or movable relative to each other. Such movement can affect the depth of investigation of the NMR tool. A variety of moving assemblies can be used to effectuate the movement, which can be performed either at the surface or downhole. The tool also can include a magnetically permeable member to control the magnetic field gradient.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: October 14, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Tim Hopper, Luis E. Depavia, Yi-Qiao Song, David T. Oliver
  • Patent number: 8794318
    Abstract: Subsurface formation evaluation comprising, for example, sealing a portion of a wall of a wellbore penetrating the formation, forming a hole through the sealed portion of the wellbore wall, injecting an injection fluid into the formation through the hole, and determining a saturation of the injection fluid in the formation by measuring a property of the formation proximate the hole while maintaining the sealed portion of the wellbore wall.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: August 5, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Edward Harrigan, Yves Barriol, Andrei I. Davydychev, Andrew J. Carnegie, Dean M. Homan, Srinand Karuppoor, Yi-Qiao Song, Tim Hopper, Henry N. Bachman, William B. Vandermeer, Anthony L. Collins, Mark A. Fredette
  • Publication number: 20130106413
    Abstract: A method and system for determining a geometry of a borehole includes forming an nuclear magnetic resonance (NMR) caliper with a plurality of coils and coupling the NMR caliper to a borehole assembly. The NMR caliper may be calibrated for porosity and the T2 of the drilling mud, prior to drilling, at the surface. After drilling commences, scans of the borehole may be conducted with each coil of the NMR caliper. Each scan may include propagating RF energy across a range of frequencies with each coil in order to excite a NMR signal at varying depths. Borehole wall distances from the NMR caliper may be determined by reviewing a plurality of T2 distributions from CPMG measurements derived from the scans. In some embodiments, borehole wall distances from the NMR caliper may be determined by reviewing porosity values derived from the scans.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 2, 2013
    Inventors: Tim Hopper, Nicholas J. Heaton, David T. Oliver, Luis E. Depavia, Yi-Qiao Song, Martin D. Hurlimann
  • Publication number: 20120126809
    Abstract: Methods and systems are provided that enable logging while drilling NMR measurements to be made with a tool having magnets with positions adjustable or movable relative to each other. Such movement can affect the depth of investigation of the NMR tool. A variety of moving assemblies can be used to effectuate the movement, which can be performed either at the surface or downhole. The tool also can include a magnetically permeable member to control the magnetic field gradient.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 24, 2012
    Inventors: Tim Hopper, Luis E. Depavia, Yi-Qiao Song, David T. Oliver
  • Publication number: 20120001629
    Abstract: Methods and systems are provided for tools having non-resonant circuits for analyzing a formation and/or a sample. For example, nuclear magnetic resonance and resistivity tools can make use of a non-resonant excitation coil and/or a detection coil. These coils can achieve desired frequencies by the use of switches, thereby removing the requirement of tuning circuits that are typical in conventional tools.
    Type: Application
    Filed: June 1, 2011
    Publication date: January 5, 2012
    Inventors: TIM HOPPER, David G. Cory, Julius Kusuma, Yi-Qiao Song, Martin D. Hurlimann, Martin E. Poitzsch
  • Publication number: 20110198078
    Abstract: Subsurface formation evaluation comprising, for example, sealing a portion of a wall of a wellbore penetrating the formation, forming a hole through the sealed portion of the wellbore wall, injecting an injection fluid into the formation through the hole, and determining a saturation of the injection fluid in the formation by measuring a property of the formation proximate the hole while maintaining the sealed portion of the wellbore wall.
    Type: Application
    Filed: July 9, 2009
    Publication date: August 18, 2011
    Inventors: Edward Harrigan, Yves BarrioL, Andrei I. Davydychev, Andrew J. Carnegie, Dean M. Homan, Srinand Karuppoor, Yi-Qiao Song, Tim Hopper, Henry N. Bachman, William B. Vandermeer, Anthony L. Collins, Mark A. Fredette