Patents by Inventor Tim J. Coffy

Tim J. Coffy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090326130
    Abstract: A film comprising a polylactic acid and polypropylene blend having a haze of from about 10% to about 95% and a gloss 45° of from about 50 to about 125. A method of producing an oriented film comprising blending polypropylene and polylactic acid to form a polymeric blend, forming the polymeric blend into a film, and orienting the film. A method of producing an injection molded article comprising blending polypropylene and polylactic acid to form a polymeric blend, injecting the polymeric blend into a mold, and forming the article.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Applicant: Fina Technology, Inc.
    Inventors: Fengkui Li, Tim J. Coffy, Michel Daumerie
  • Publication number: 20090324911
    Abstract: A multi-component article comprising a first component comprising a biodegradable polymer, and a second component comprising a polyolefin and a reactive modifier. A method of preparing a multi-layer film comprising coextruding first and second film layers, wherein the first layer comprises a polylactic acid and the second layer comprises a polyolefin and an epoxy-functionalized polyolefin. A method of preparing a multi-component fiber comprising coextruding a core component and a sheath component, wherein the core component comprises a polyolefin and an epoxy-functionalized polyolefin and the sheath component comprises a polylactic acid.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Applicant: Fina Technology, Inc.
    Inventors: Fengkui Li, Tim J. Coffy, Michel Daumerie
  • Publication number: 20090326152
    Abstract: A composition comprising a blend of a polyolefin, polylactic acid, and a reactive modifier. A method of producing an oriented film comprising reactive extrusion compounding a mixture comprising polypropylene, polylactic acid, a reactive modifier to form a compatibilized polymeric blend, casting the compatibilized polymeric blend into a film, and orienting the film. A method of preparing a reactive modifier comprising contacting a polyolefin, a multifunctional acrylate comonomer, and an initiator under conditions suitable for the formation of an epoxy-functionalized polyolefin wherein the epoxy-functionalized polyolefin has a grafting yield of from 0.2 wt. % to 15 wt. %.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Applicant: Fina Technology, Inc.
    Inventors: Fengkui Li, Tim J. Coffy, Michel Daumerie
  • Publication number: 20090182100
    Abstract: Process for the polymerization of ethylene to produce a polymer of enhanced long chain branching. Ethylene and hydrogen are introduced into a first reaction zone to produce an ethylene polymer having a first molecular weight distribution. The polymer from the first reaction zone is applied to a second reaction zone along with ethylene and a C3-C8 alpha-olefin monomer. The second reaction zone is operated to produce a copolymer having a second molecular weight distribution different from the first molecular weight distribution. A polymer fluff of bimodal molecular weight distribution is recovered from the second reaction zone and heated to melt the fluff and then extruded. Concomitantly with the heating and or extrusion, the polymer fluff is treated in order to enhance the long chain branching and reduce the melt index MI5 of the polymer product.
    Type: Application
    Filed: January 14, 2008
    Publication date: July 16, 2009
    Inventors: Gerhard K. Guenther, Steven D. Gray, Tim J. Coffy
  • Publication number: 20090105433
    Abstract: Embodiments of the invention generally include multi-component catalyst systems, polymerization processes and heterophasic copolymers formed by the processes. The multi-component catalyst system generally includes a first catalyst component selected from Ziegler-Natta catalyst systems including a diether internal electron donor and a metallocene catalyst represented by the general formula XCpACpBMAn, wherein X is a structural bridge, CpA and CpB each denote a cyclopentadienyl group or derivatives thereof, each being the same or different and which may be either substituted or unsubstituted, M is a transition metal and A is an alkyl, hydrocarbyl or halogen group and n is an integer between 0 and 4.
    Type: Application
    Filed: October 17, 2007
    Publication date: April 23, 2009
    Applicant: Fina Technology, Inc.
    Inventors: Tim J. Coffy, Michel Daumerie, Kenneth P. Blackmon, William Gauthier, Jun Tian, Joseph Thorman
  • Publication number: 20090023875
    Abstract: Disclosed is a process for making a Ziegler-Natta catalyst having controlled particle size and distribution. It comprises altering the precipitation of a catalyst component from a catalyst synthesis solution including a soluble magnesium containing catalyst precursor by controlling the concentration of either the soluble magnesium containing catalyst precursor, wherein the average particle size of the catalyst component is increased, and the particle size distribution increased, with a decreased concentration of the soluble magnesium containing catalyst precursor; or of the precipitating agent, wherein the average particle size of the catalyst component is increased, and the particle size distribution increased with an increased concentration of the precipitating agent. Use of the invention enables improved catalyst consistency regardless of production scale and customizing of catalyst morphology to desired polymer morphology.
    Type: Application
    Filed: July 16, 2007
    Publication date: January 22, 2009
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Kayo Vizzini, Henry Enriquez, Steven D. Gray, Tim J. Coffy, David W. Knoeppel
  • Patent number: 7468339
    Abstract: An olefin polymerization catalyst may be prepared using a process including contacting a metal compound of the formula M(OR1)2 with a diketone to form a catalyst precursor having the general formula: wherein M is a Group IIA metal; O is oxygen; n=1 or 2; R1, R2, R3, and R4 are the same or different; and are a hydrogen or a substituted or unsubstituted alkyl or aryl moiety having from about 1 to about 20 carbons atoms.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: December 23, 2008
    Assignee: Fina Technology, Inc.
    Inventors: Tim J. Coffy, Steven D. Gray
  • Publication number: 20080275197
    Abstract: A bimodal polyethylene having a high density ranging from about 0.955 to about 0.959 g/cc, an improved environmental stress cracking resistance (ESCR) of from about 400 to about 2500 hours, and an improved 0.4% flexural modulus of from about 180,000 to about 260,000 psi (1,200 MPa to about 1,800 MPa) may be formed using a Ziegler-Natta polymerization catalyst using two reactors in series. The bimodal polyethylene may have a high load melt index (HLMI) of from about 2 and about 30 dg/min and may be optionally made with a small amount of alpha-olefinic comonomer in the second reactor. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: May 4, 2007
    Publication date: November 6, 2008
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Tim J. Coffy, Gerhard Guenther, Steve D. Gray
  • Publication number: 20080269441
    Abstract: A process for the polymerization of ethylene to provide an ethylene polymer of reduced Yellowness Index. A feed stream, comprising an inert hydrocarbon diluent containing ethylene in a minor amount, is supplied to a polymerization reactor. A chromium-based polymerization catalyst and a triethylboron co-catalyst are incorporated into the feed stream within the reactor. The polymerization catalyst will normally be used in an amount within the range of 0.008-0.1 wt. % of the diluent in the feed stream and the triethylboron co-catalyst is incorporated in an amount within the range of 0.1-50 ppm of the diluent. The polymer fluff from the reactor is heated to a temperature sufficient to melt the fluff which is then extruded to produce a polymer product. The Yellowness Index after high temperature aging is at least 5% less than the corresponding Yellowness Index of a corresponding polymer product produced without the triethylboron co-catalyst.
    Type: Application
    Filed: April 30, 2007
    Publication date: October 30, 2008
    Inventors: Gerhard Guenther, David W. Knoeppel, Steven D. Gray, Tim J. Coffy
  • Publication number: 20080153998
    Abstract: Chromium catalysts may be prepared using a process including contacting a chromium catalyst precursor with a treatment agent. This catalyst may be used for polymerization of a variety of monomers, particularly olefins, to form polymers for a wide variety of applications. The catalyst exhibits desirable activity rates and polymers produced therewith may exhibit improved melt flow, polydisperity values, and changes in shear thinning as compared to those prepared under similar conditions but using the same treatment agent as a cocatalyst instead.
    Type: Application
    Filed: December 20, 2006
    Publication date: June 26, 2008
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Ricky McCormick, David W. Knoeppel, Steven D. Gray, Tim J. Coffy
  • Patent number: 7365138
    Abstract: A method of modifying a Ziegler-Natta type polyolefin catalyst comprises contacting the Ziegler-Natta catalyst with olefin monomer to form a prepolymerized catalyst. The prepolymerized catalyst can comprise a reduced number of catalyst particles having a size of 40 microns or less. The prepolymerized catalyst can be used in a polymerization process to produce polymer fluff particles with a reduced number of polymer fluff fines than the Ziegler-Natta type catalyst.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: April 29, 2008
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J Coffy, Edwar S. Shamshoum, Hong Chen
  • Patent number: 7067451
    Abstract: A method of forming a polyolefin catalyst component includes halogenating metal complexes. The metal complexes result from reacting a metal alkoxide with an alcohol-ether. A particular non-limiting example is a magnesium complex formed by reacting magnesium alkoxide with an ethylene alcohol-ether, and then chlorinating the magnesium complex. Catalyst components, catalysts, catalyst systems, polyolefin polymers and methods of making each are disclosed.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: June 27, 2006
    Assignee: Fina Technology, Inc.
    Inventors: Tim J. Coffy, Steven D. Gray
  • Patent number: 6930071
    Abstract: A Ziegler-Natta type catalyst component can be produced by a process comprising contacting a magnesium dialkoxide compound with a halogenating agent to form a reaction product A, and contacting reaction product A with a first, second and third halogenating/titanating agents. Catalyst components, catalysts, catalyst systems, polyolefin, products made therewith, and methods of forming each are disclosed. The reaction products can be washed with a hydrocarbon solvent to reduce titanium species [Ti] content to less than about 100 mmol/L.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: August 16, 2005
    Assignee: Fina Technology, Inc.
    Inventors: David W. Knoeppel, Tim J. Coffy, Henry Enriquez, Steven D. Gray
  • Patent number: 6930137
    Abstract: An improved method of manufacturing blown polyolefin films with increased bubble stability and higher blown film production rates is disclosed. A method in which the amounts and ratios of known antioxidant polymer film additives (phosphites and phenolics) are controlled to provide limited long chain branching (LCB) and greater rheological breadth in a polyethylene melt to improve both processing characteristics and mechanical properties in the resulting film.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: August 16, 2005
    Assignee: Fina Technology, Inc.
    Inventors: Michael McLeod, Nguong van Nguyen, Gerhard Guenther, Tim J. Coffy, Rodolfo Mier Martinez
  • Patent number: 6916895
    Abstract: A new synthesis of a Ziegler-Natta catalyst uses a multi-step preparation that includes treating a magnesium dialkoxide compound with halogenating/titanating agents, an organoaluminum preactivating agent, and a heat treatment. The catalyst may be used in the polymerization of olefins, particularly ethylene, to control the molecular weight distribution of the resulting polyolefins.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: July 12, 2005
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J. Coffy
  • Patent number: 6864207
    Abstract: A process for making a polyolefin catalyst component, catalyst and polymer resin is disclosed. Controlling the viscosity of a catalyst synthesis solution with the addition of aluminum alkyl alters the precipitation of the catalyst component from a catalyst synthesis solution. The average particle size of the catalyst component increases with an increased concentration of aluminum alkyl in the synthesis solution. The catalyst component can be produced by a process comprising contacting a magnesium alkyl compound with an alcohol and an aluminum alkyl to form a magnesium dialkoxide. Catalyst components, catalysts, catalyst systems, polyolefin, products made therewith, and methods of forming each are disclosed. The reaction products can be washed with a hydrocarbon solvent to reduce titanium species [Ti] content to less than about 100 mmol/L.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: March 8, 2005
    Assignee: Fina Technology, Inc.
    Inventors: David W. Knoeppel, Tim J. Coffy, Henry Enriquez, Steven D. Gray
  • Patent number: 6846859
    Abstract: The present invention includes a polyolefin composition having reduced coloration with aging. The polyolefin composition comprises at least one polyolefin, an effective amount of a primary phenolic antioxidant to promote long term thermal stability of the polymer composition, and an effective amount of a phosphite processing stabilizer to promote thermal stability of the polymer composition during melt processing. The polymer composition further comprises an effective amount of a sacrificial phosphite antioxidant to reduce the yellowness index of the polymer composition. The sacrificial phosphite antioxidant and the phosphite processing stabilizer are not the same compound.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: January 25, 2005
    Assignee: Fina Technology, Inc.
    Inventors: Tim J. Coffy, Steven D. Gray, Gerhard K. Guenther
  • Patent number: 6846887
    Abstract: A method of modifying a Ziegler-Natta type polyolefin catalyst comprises contacting the Ziegler-Natta catalyst with olefin monomer to form a prepolymerized catalyst. The prepolymerized catalyst can comprise a reduced number of catalyst particles having a size of 40 microns or less. The prepolymerized catalyst can be used in a polymerization process to produce polymer fluff particles with a reduced number of polymer fluff fines than the Ziegler-Natta type catalyst.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: January 25, 2005
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J. Coffy, Edwar S. Shamshoum, Hong Chen
  • Patent number: 6790804
    Abstract: A process of forming a polyolefin catalyst component includes contacting a metal compound of the formula MR2 with a diketone to form a metal bis(diketonate) having the formula M(OCRCR′CRO)2, wherein M is a Group IIA or Group VIIB metal, and wherein R and R′ are each hydrocarbyls or substituted hydrocarbyls having from 1 to 20 carbons atoms. Catalyst components, catalysts, polyolefin polymers, catalysts systems, and methods of preparing same are disclosed.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: September 14, 2004
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J. Coffy, Edwar S. Shamshoum
  • Publication number: 20040162401
    Abstract: A method of modifying a Ziegler-Natta type polyolefin catalyst comprises contacting the Ziegler-Natta catalyst with olefin monomer to form a prepolymerized catalyst. The prepolymerized catalyst can comprise a reduced number of catalyst particles having a size of 40 microns or less. The prepolymerized catalyst can be used in a polymerization process to produce polymer fluff particles with a reduced number of polymer fluff fines than the Ziegler-Natta type catalyst.
    Type: Application
    Filed: February 18, 2003
    Publication date: August 19, 2004
    Inventors: Steven D. Gray, Tim J. Coffy, Edwar S. Shamshoum, Hong Chen