Patents by Inventor Tim K. Shia

Tim K. Shia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210333405
    Abstract: Described herein are systems and methods for ToF imaging of a target. The ToF imaging system includes an optical splitter that splits the light beam from a light source into multiple transmitting light beams. The transmitting light beams are directed towards a target, and one or more portions return as reflected light beams. A detector generates detector signals, representative of the reflected light beams. An electronically-controlled mirror is used to change the angular position of the transmitting light beams incident on the target, so that different regions of the target can be measured at different time instants. The ToF imaging system uses a flash and scan process to flash one region(s) of the target with the transmitting light beams during one sub-frame exposure and to scan other region(s) of the target during subsequent sub-frame exposures. An image processing apparatus constructs target information from multiple sub-frame exposure.
    Type: Application
    Filed: March 29, 2021
    Publication date: October 28, 2021
    Inventors: Tim K. SHIA, Yun-Chung NA
  • Patent number: 7358805
    Abstract: A fully differential sensing apparatus and an input common mode feedback circuit are provided. The input common mode feedback circuit includes a common mode error amplifier and a plurality of adaptive conductance elements. Each adaptive conductance element behaves with a low impedance characteristic when its anode voltage is greater than its cathode voltage by a positive threshold voltage or, on the contrary, when the anode voltage of such an adaptive conductance element is lower than its cathode voltage by a negative threshold voltage, the adaptive element also behaves with a low impedance characteristic; otherwise the aforementioned adaptive conductance element behaves with a high impedance characteristic. The common mode error amplifier and a plurality of such adaptive conductance elements form a negative feedback loop to effectively maintain the input common voltage of a fully differential input amplifier, which can be used for a fully differential sensing apparatus.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: April 15, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Tim K. Shia, Chi-Chen Chung, Long-Xi Chang
  • Publication number: 20070285166
    Abstract: A fully differential sensing apparatus and an input common mode feedback circuit are provided. The input common mode feedback circuit includes a common mode error amplifier and a plurality of adaptive conductance elements. Each adaptive conductance element behaves with a low impedance characteristic when its anode voltage is greater than its cathode voltage by a positive threshold voltage or, on the contrary, when the anode voltage of such an adaptive conductance element is lower than its cathode voltage by a negative threshold voltage, the adaptive element also behaves with a low impedance characteristic; otherwise the aforementioned adaptive conductance element behaves with a high impedance characteristic. The common mode error amplifier and a plurality of such adaptive conductance elements form a negative feedback loop to effectively maintain the input common voltage of a fully differential input amplifier, which can be used for a fully differential sensing apparatus.
    Type: Application
    Filed: August 25, 2006
    Publication date: December 13, 2007
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Tim K. SHIA, Chi-Chen Chung, Long-Xi Chang
  • Patent number: 6725882
    Abstract: Disclosed is a micro flowguide device comprising: a micro channel comprising at least one bubble trap to retard bubbles positioned in said bubble trap; an electrolytic bubble generating device to generate bubbles in said fluid by an electrolytic reaction; and a pressure source to supply a suited pressure to said fluid to pass through said micro channel; wherein said electrolytic bubble generating device causes bubbles to be generated at areas adjacent to said at least one bubble trap. Electrolytic bubbles are generated through a, localized electrolytic reaction enabled by the exposure of a set of DC-source-connected electrodes inside a conduit branch. Accumulated bubbles will be trapped and kept at several traps of the invented flowguide. When the backward pressure of trapped bubbles is rising to the level of forward pressure head, flow speed reduces to zero and channel branch is shut down.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: April 27, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Tim K. Shia, Jhy-Wen Wu, Nan-Kuang Yao, Yuan-Fong Kuo, Shaw-Hwa Pang