Patents by Inventor Tim M. Coffman

Tim M. Coffman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5694073
    Abstract: A supply-voltage detecting stage (11) that supplies first and second reference currents (I.sub.REFP and I.sub.REFN) which vary with the supply voltage (V.sub.cc) and are coupled by first and second gain stages (12A and 12B), respectively, to first and second temperature-detecting stages (13A and 13B), respectively. First and second temperature-detecting stages (13A and 13B) increase the coupled reference currents (I.sub.REFP and I.sub.REFN), respectively, to compensate for temperature increase through use temperature-sensitive, long-channel transistors (M34-M37 and M42-M45), supplying temperature and supply-voltage compensated output bias voltages at output terminals (MIRN and MIRP).
    Type: Grant
    Filed: November 21, 1995
    Date of Patent: December 2, 1997
    Assignee: Texas Instruments Incorporated
    Inventors: Timothy J. Coots, Phat C. Truong, Sung-Wei Lin, Tim M. Coffman, Ming-Bo Liu, Ronald J. Syzdek
  • Patent number: 5668769
    Abstract: The method of this invention prevents transient currents at high-frequency disable cycles and disables DC current paths after a minimum delay time, thereby reducing power dissipation. This invention includes a delay circuit functioning to prevent disablement of DC paths where chip-disable times occur at intervals below a minimum duration. The result is a decrease in the number of undesired voltage drops on internal power buses due to transient currents. The method detects external chip-disable pulses that occur before a minimum time duration, then prevents those pulses from powering down internal direct-current paths. At the same time, the output driver high impedance functionality of the chip-disable signal is preserved.
    Type: Grant
    Filed: November 21, 1995
    Date of Patent: September 16, 1997
    Assignee: Texas Instruments Incorporated
    Inventors: Tim M. Coffman, Ronald J. Syzdek, Timothy J. Coots, Phat C. Truong, Sung-Wei Lin
  • Patent number: 5646887
    Abstract: Low-voltage-correcting bias circuitry for a sense amplifier includes first, second and third N-channel transistors. The channel of the first transistor couples a current mirror to the input terminal of the amplifier and the gate of the second transistor, the channel of the second transistor couples the gate of the first transistor to a reference terminal. The channel of the third transistor couples the supply voltage to the gate of the first transistor. The gate of the third transistor is coupled to a reference voltage. A P-channel transistor has a channel coupling the supply voltage to the gate of the first transistor. The gate of the P-channel transistor is coupled to a low-voltage-sensing signal. Pre-charge circuitry includes a nonvolatile memory cell and fourth, fifth and sixth N-channel transistors. The channel of the fourth transistor is in series with the channel of the memory cell. The channel of the fifth transistor couples the channel of the memory cell to the input of the sense amplifier.
    Type: Grant
    Filed: November 20, 1995
    Date of Patent: July 8, 1997
    Assignee: Texas Instruments Incorporated
    Inventors: Phat C. Truong, Tim M. Coffman
  • Patent number: 5646894
    Abstract: The circuit of this invention improves significantly the programming speed of a Flash EPROM. The circuit includes a detector circuit (DC) using a pre-charge capacitor (C1), capacitor dividers [(C1/(C1+C2) and C3/(C2+C3)] and a voltage comparator (COMP) to signal a control logic circuit (CLC) when the programming voltage is within supply voltage (V.sub.cc) of its final value. At that point the control logic circuit (CLC) boosts the voltage on one terminal of a boost capacitor (BC) by the value of the supply voltage (V.sub.cc). The other terminal (XDD) of the boost capacitor (BC) furnishes the boosted programming voltage for the Flash EPROM.
    Type: Grant
    Filed: November 21, 1995
    Date of Patent: July 8, 1997
    Assignee: Texas Instruments Incorporated
    Inventors: Sung-Wei Lin, Tim M. Coffman, Ronald J. Syzdek
  • Patent number: 5636162
    Abstract: A procedure for erasing a Flash EPROM array (AR) includes applying a series of erase pulses to all of the subarrays (S1, S2, etc.) of a Flash EPROM array (AR) simultaneously. Between each erase pulse, the memory cells (10) of each sub array (S1, S2, etc.) are simultaneously checked one row at a time and one column position at a time, to see whether or not any cell (10) is over-erased. If, at any time during the procedure a cell (10) is found to be over-erased, the over-erased condition is corrected and the erase procedure continues, but with erase pulses applied only to those subarrays (S1, S2, etc.) having non-erased memory cells (10) as in prior-art subarray erase procedures. Under almost all circumstances, the procedure of this invention decreases over-all erase time.
    Type: Grant
    Filed: June 12, 1996
    Date of Patent: June 3, 1997
    Assignee: Texas Instruments Incorporated
    Inventors: Tim M. Coffman, Sung-Wei Lin, Phat C. Truong
  • Patent number: 5491809
    Abstract: A method for erasing blocks of a non-volatile memory includes detecting whether a block is in at least one of an erased state or a state secured from erasure; then setting a flag register at a first level for each block detected to be in at least one of an erased state or a state secured from erasure or at a second level for each block not so detected; then selecting for erasure blocks that have their respective flags set at the second level; and then erasing the selected blocks.
    Type: Grant
    Filed: January 5, 1993
    Date of Patent: February 13, 1996
    Assignee: Texas Instruments Incorporated
    Inventors: Tim M. Coffman, Sung-Wei Lin, T. Damodar Reddy
  • Patent number: 5450417
    Abstract: The power-on-reset test circuit of this invention includes two imbalanced latches to detect the occurrence of a transient power-on-reset signal. The occurrence of a transient power-on-reset signal is latched for later verification during circuit testing. Both latches are designed to default to a low voltage output (Vss) on initial power-up. One of the latches is set by the power-on-reset signal to a high-voltage output (Vcc) state. The other latch is set by a reference-potential input to a low-voltage output state. If the set latch has a high-voltage output and the other latch has a low-voltage output, then the power-on-reset circuitry is functioning properly.
    Type: Grant
    Filed: October 26, 1993
    Date of Patent: September 12, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: Phat C. Truong, Tim M. Coffman, Sung-Wei Lin, T. Damodar Reddy, Dennis R. Robinson
  • Patent number: 5450357
    Abstract: A level shifter circuit 150 for selecting different voltage levels for programming memory cells 10 is provided. The level shifter 150 has an input 152 connected to a control circuitry and an output 154 connected to memory cells 10. The level shifter 150 is connected to two voltage sources: a high voltage source 166 and a low voltage source 164. The level shifter 150 has an isolation transistor 156 to buffer the input control circuitry from the higher voltage in the level shifter 150. Depending on the input control signal, either a first switching transistor 158 will select the low voltage source 164 for output or a second switching transistor 162 will select the high voltage source 166 for output. A pull-up transistor 162 is used to maintain the state of the switching transistors 158, 160 when the voltage sources 164, 166 ramp up. A voltage limiting transistor 170 reduces the voltage potential (breakdown voltage) across the drain and source terminals of the pull-up transistor 162.
    Type: Grant
    Filed: April 1, 1994
    Date of Patent: September 12, 1995
    Assignee: Texas Instruments Incorporated
    Inventor: Tim M. Coffman
  • Patent number: 5424992
    Abstract: An array source signal discharge controller device (10) includes a pulse converter circuit (12) that receives an erase pulse signal (ERPULSE). The pulse converter circuit (12) converts the erase pulse signal (ERPULSE) into a pulse control signal (ERPCL) that is subsequently translated into a higher voltage level bias signal (ECL.sub.--). The higher voltage level bias signal (ECL.sub.--) drives array source signal generator circuits (16) that produce array source signals (AS) to erase particular array subsections of memory as determined by a selection circuit (17). The array source signal generator circuits (16) also generate array source command signals (ASCOM.sub.--) to indicate a discharging status of all array source signals (AS). An erase completion detector circuit (18) monitors the array source command signals (ASCOM.sub.--) and generates an array source detect signal (ASDET) to indicate completion of array source signal (AS) discharging.
    Type: Grant
    Filed: August 25, 1993
    Date of Patent: June 13, 1995
    Assignee: Texas Instruments Incorporated, a Delaware corporation
    Inventors: Tim M. Coffman, Sung-Wei Lin, Dennis R. Robinson, Phat C. Truong, T. Damodar Reddy
  • Patent number: 5422590
    Abstract: A system for erasing a memory array in a memory has a supply voltage and a negative charge pump. The negative charge pump system includes (a) circuitry to select a memory array to be erased; (b) for circuitry to switch on the supply voltage Vnn for the charge pump; (c) circuitry to pump the supply voltage Vnn with the charge pump to produce a pumped negative voltage; (d) circuitry to erase the selected array with the pumped negative voltage; (e) circuitry to provide the pumping; and (f) circuitry to provide a discharge path for voltages trapped in the charge pump.
    Type: Grant
    Filed: April 26, 1994
    Date of Patent: June 6, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: Tim M. Coffman, Sung-Wei Lin
  • Patent number: 5397946
    Abstract: The CMOS high-voltage sensor circuit has a voltage reference including, for example, of four N-channel MOS transistors; one pass-gate P-channel transistor; one current-mirror P-channel MOS transistor; and a conventional high-voltage sensor including, for example, of two P-channel MOS transistors and one N-channel MOS transistor. The sensor circuit of this invention generates a high-voltage signal at the output if the input voltage is greater than both the reference voltage plus two P-channel threshold voltages and the supply voltage Vcc plus two P-channel threshold voltages. The power-up or power-down sequence may be in any order without adversely affecting the operation of the circuit of this invention.
    Type: Grant
    Filed: October 26, 1993
    Date of Patent: March 14, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: Phat C. Truong, Tim M. Coffman, Sung-Wei Lin, T. Damodar Reddy, Dennis R. Robinson
  • Patent number: 5396115
    Abstract: The power-on reset circuit of this invention includes a current-sensing circuit, a pulse-stretching circuit, and a voltage-reference circuit. The voltage-reference circuit consists, for example, of one N-Channel and one P-Channel MOS transistor. The circuit of this invention uses a static voltage reference comprised of CMOS transistors to detect the power-up condition. The circuit of this invention improves detection of a transient power-supply voltage Vcc loss and detects that power-supply voltage transient on both rising and falling edges.
    Type: Grant
    Filed: October 26, 1993
    Date of Patent: March 7, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: Tim M. Coffman, Phat C. Truong, Sung-Wei Lin, T. Damodar Reddy, Dennis R. Robinson
  • Patent number: 5392248
    Abstract: The column-line short detection circuit of this invention includes a special test circuit that turns off wordlines (15), a N-channel transistor (23) for each column line (18), a decoder (19a) that uses only the least significant column address (20d) for input to the test circuit, and a sensor (SA) to detect current between shorted column lines (18). Because the column-line short detection circuit of this invention uses only the least significant address as input for column decoder (19a), it requires a very small number of transistors.
    Type: Grant
    Filed: October 26, 1993
    Date of Patent: February 21, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: Phat C. Truong, Tim M. Coffman, Sung-Wei Lin, T. Damodar Reddy, Dennis R. Robinson
  • Patent number: 5335200
    Abstract: An improved negative charge pump system for erasing a memory array in a memory which has a supply voltage and a negative charge pump. The negative charge pump system includes (a) a device for selecting a memory array to be erased; (b) a device for switching on the supply voltage Vnn for the charge pump; (c) a device for pumping the supply voltage Vnn with the charge pump to produce a pumped negative voltage; (d) a device for erasing the selected array with the pumped negative voltage; (e) a device for stopping the pumping; and (f) a device for providing a discharge path for voltages trapped in the charge pump.
    Type: Grant
    Filed: January 5, 1993
    Date of Patent: August 2, 1994
    Assignee: Texas Instruments Incorporated
    Inventors: Tim M. Coffman, Sung-Wei Lin
  • Patent number: 5297093
    Abstract: An improved sense amplifier for a computer having non-volatile memories, each non-volatile memory having an array of memory cells, each cell having a drain, and the drains of all the cells for one column of cells connected to a drain-column line, The sense amplifier reads the state of the memory cell by a) sensing a reference current; b) providing drain-column voltage swings during the reference current sensing; c) sensing the current on the drain-column line; d) producing voltages above and below a reference voltage whereas the produced voltages represent the state of the memory cell; and, e) adjusting the bias of the biasing transistors in response to the produced voltages.
    Type: Grant
    Filed: January 5, 1993
    Date of Patent: March 22, 1994
    Assignee: Texas Instruments Incorporated
    Inventor: Tim M. Coffman
  • Patent number: 4868790
    Abstract: A reference-column circuit for supplying a reference voltage to be used in sensing programming status of read-only-memory cells in a memory array having virtual-ground circuit connections is disclosed. The reference-column circuit includes an adjacent non-programmed memory cell having a common terminal with an identical non-programmed memory cell of prior-art circuitry. The additional memory cell and associated grounding circuit provide a compensating component of reference voltage to the input of a sense amplifier, the compensating component acting to eliminate a source of possible errors in sense amplifier transmission caused by non-programmed adjacent memory cells in the memory array.
    Type: Grant
    Filed: April 28, 1988
    Date of Patent: September 19, 1989
    Assignee: Texas Instruments Incorporated
    Inventors: David D. Wilmoth, Tim M. Coffman, John F. Schreck, Jeffrey Kaszubinski