Patents by Inventor Tim Møller Hansen

Tim Møller Hansen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10730247
    Abstract: A method of manufacturing a wind turbine blade component in form of a shear web is described. The method comprising the steps of: a) providing a pre-manufactured shear web body having a first side and a second side as well as a first end and a second end; b) providing a first pre-formed web foot flange comprising a fibre-reinforcement material; c) arranging a first fibre layer from the first pre-formed web foot flange and to a part of the first side of the shear web body; d) arranging a second fibre layer from the first pre-formed web foot flange and to a part of the second side of the shear web body; e) supplying a resin to said first fibre layer and second fibre layer simultaneous with or subsequent to steps c) and d); and f) allowing the resin to cure so as to form the shear web.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: August 4, 2020
    Assignee: LM WP PATENT HOLDING A/S
    Inventors: Tim Moller Hansen, Kim Ansholm Rasmussen, Christian Lundsgaard-Larsen, Steven Hauge Pedersen
  • Patent number: 10357931
    Abstract: A system and method for the manufacture of a wind turbine blade component is described, preferably a shear web component for a wind turbine. The shear web is manufactured by using a forming tool to define a flange-shaped cavity at an end of a web member. A resin is injected into the cavity and cured to form a flange cast onto the web member. The forming tool is subsequently removed from the web member to provide a component having a load-bearing flange formed from a cured resin.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: July 23, 2019
    Assignee: LM WP PATENT HOLDING A/S
    Inventors: Klavs Jespersen, Tim Møller Hansen, Lars Nielsen
  • Publication number: 20170021575
    Abstract: A method of manufacturing a wind turbine blade component in form of a shear web is described. The method comprising the steps of: a) providing a pre-manufactured shear web body having a first side and a second side as well as a first end and a second end; b) providing a first pre-formed web foot flange comprising a fibre-reinforcement material; c) arranging a first fibre layer from the first pre-formed web foot flange and to a part of the first side of the shear web body; d) arranging a second fibre layer from the first pre-formed web foot flange and to a part of the second side of the shear web body; e) supplying a resin to said first fibre layer and second fibre layer simultaneous with or subsequent to steps c) and d); and f) allowing the resin to cure so as to form the shear web.
    Type: Application
    Filed: December 1, 2014
    Publication date: January 26, 2017
    Inventors: Tim Møller HANSEN, Kim Ansholm RASMUSSEN, Christian LUNDSGAARD-LARSEN, Steven Hauge PEDERSEN
  • Publication number: 20160279890
    Abstract: A system and method for the manufacture of a wind turbine blade component is described, preferably a shear web component for a wind turbine. The shear web is manufactured by using a forming tool to define a flange-shaped cavity at an end of a web member. A resin is injected into the cavity and cured to form a flange cast onto the web member. The forming tool is subsequently removed from the web member to provide a component having a load-bearing flange formed from a cured resin.
    Type: Application
    Filed: November 18, 2014
    Publication date: September 29, 2016
    Inventors: Klavs JESPERSEN, Tim Møller HANSEN, Lars NIELSEN
  • Patent number: 7892467
    Abstract: The invention relates to a method of producing a shell member of fiber composite material by means of vacuum infusion, where the fiber material is impregnated with liquid polymer, and applying a mould (18) with a mould cavity. In the mould cavity a lower distribution layer (11) is placed. A fiber insertion (1) including a plurality of fiber layers is placed above the lower distribution layer (11). A first upper distribution layer (9) and a second upper distribution layer (10) are placed at a transverse distance of each other above the fiber insertion, so that at least a part of the first distribution layer overlaps a first zone (2) of the fiber insertion (1), and at least a part of the second distribution layer overlaps a second zone (3) of the fiber insertion (1), the first zone (2) and the second zone (3) being separated by an intermediate zone (6) neither overlapping the first nor the second distribution layer (9, 10).
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: February 22, 2011
    Assignee: LM Glasfiber A/S
    Inventors: Michael Kofoed, Tim Møller Hansen
  • Patent number: 7803302
    Abstract: Method of producing an oblong shell member made of fiber composite material by means of vacuum infusion, where the fiber material is impregnated with liquid polymer. A mould is applied with a mould cavity, in which a fiber insertion (3) with a first lateral face (1) and a second lateral face (2) is placed, and where said fiber insertion includes a plurality of fiber layers and a distribution layer (4), said distribution layer allowing a higher rate of flow for the liquid polymer than the fiber layers.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: September 28, 2010
    Assignee: LM Glasfiber A/S
    Inventor: Tim Møller Hansen
  • Publication number: 20090051076
    Abstract: The invention relates to a method of producing a shell member of fibre composite material by means of vacuum infusion, where the fibre material is impregnated with liquid polymer, and applying a mould (18) with a mould cavity. In the mould cavity a lower distribution layer (11) is placed. A fibre insertion (1) including a plurality of fibre layers is placed above the lower distribution layer (11). A first upper distribution layer (9) and a second upper distribution layer (10) are placed at a transverse distance of each other above the fibre insertion, so that at least a part of the first distribution layer overlaps a first zone (2) of the fibre insertion (1), and at least a part of the second distribution layer overlaps a second zone (3) of the fibre insertion (1), the first zone (2) and the second zone (3) being separated by an intermediate zone (6) neither overlapping the first nor the second distribution layer (9, 10).
    Type: Application
    Filed: March 2, 2007
    Publication date: February 26, 2009
    Inventors: Michael Kofoed, Tim Moller Hansen