Patents by Inventor Tim Merkel

Tim Merkel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11851625
    Abstract: Methods are provided for reducing the quantity of acid gas reinjected into a reservoir by partial CO2 removal processes. The methods include acid gas removal, acid gas enrichment, generation of a CO2 rich stream and an H2S rich stream, and reinjection of the H2S rich stream into the reservoir. The acid gas enrichment can be performed by a solvent-based acid gas enrichment unit, a membrane-based acid gas enrichment unit, or a combination of a solvent-based acid gas enrichment unit a and membrane-based acid gas enrichment unit. The system includes an acid gas removal unit, one or more acid gas enrichment units, and an acid gas reinjection compressor. The acid gas enrichment unit can be a solvent-based acid gas enrichment unit, a membrane-based acid gas enrichment unit, or a solvent-based acid gas enrichment unit and a membrane-based acid gas enrichment unit.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: December 26, 2023
    Inventors: Milind Vaidya, Sebastien Duval, Feras Hamad, Ghulam Shabbir, Nasser Al-Aslai, Ahmad Bahamdan, Richard Baker, Tim Merkel, Kaaeid Lokhandwala
  • Publication number: 20230001349
    Abstract: Methods and systems for recovering sulfur dioxide from a Claus unit process emissions stream are provided. The method comprises the steps of generating a process emissions stream from a thermal oxidizer or other combustion device, introducing the emissions stream to an SO2 removal system, introducing the SO2 rich stream from the SO2 removal system to a CO2 removal system, and introducing an enriched SO2 stream back to the Claus unit. The SO2 removal system can include one or more SO2 selective membranes. The CO2 removal system can include one or more CO2 selective membranes.
    Type: Application
    Filed: June 24, 2021
    Publication date: January 5, 2023
    Applicants: Saudi Arabian Oil Company, Membrane Technology and Research, Inc
    Inventors: Milind Vaidya, Sebastien Duval, Feras Hamad, Richard Baker, Tim Merkel, Kaaeid Lokhandwala, Ahmad Bahamdan, Faisal Al-Otaibi
  • Publication number: 20220380693
    Abstract: Methods are provided for reducing the quantity of acid gas reinjected into a reservoir by partial CO2 removal processes. The methods include acid gas removal, acid gas enrichment, generation of a CO2 rich stream and an H2S rich stream, and reinjection of the H2S rich stream into the reservoir. The acid gas enrichment can be performed by a solvent-based acid gas enrichment unit, a membrane-based acid gas enrichment unit, or a combination of a solvent-based acid gas enrichment unit a and membrane-based acid gas enrichment unit. The system includes an acid gas removal unit, one or more acid gas enrichment units, and an acid gas reinjection compressor. The acid gas enrichment unit can be a solvent-based acid gas enrichment unit, a membrane-based acid gas enrichment unit, or a solvent-based acid gas enrichment unit and a membrane-based acid gas enrichment unit.
    Type: Application
    Filed: May 20, 2021
    Publication date: December 1, 2022
    Applicants: Saudi Arabian Oil Company, Membrane Technology and Research, Inc
    Inventors: Milind Vaidya, Sebastien Duval, Feras Hamad, Ghulam Shabbir, Nasser Al-Aslai, Ahmad Bahamdan, Richard Baker, Tim Merkel, Kaaeid Lokhandwala
  • Patent number: 11420155
    Abstract: A process for sweetening a syngas stream, the process comprising the steps of: providing a syngas stream to a nonselective amine absorption unit, the sour syngas stream comprising syngas, carbon dioxide, and hydrogen sulfide; separating the syngas stream in the nonselective amine absorption unit to obtain an overhead syngas stream and an acid gas stream; introducing the acid gas stream to a membrane separation unit, the acid gas stream comprising hydrogen sulfide and carbon dioxide; separating the acid gas stream in the membrane separation unit to produce a retentate stream and a permeate stream, wherein the retentate stream comprises hydrogen sulfide, wherein the permeate stream comprises carbon dioxide; introducing the retentate stream to a sulfur recovery unit; processing the retentate stream in the sulfur recovery unit to produce a sulfur stream and a tail gas stream, wherein the sulfur stream comprises liquid sulfur.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: August 23, 2022
    Assignees: SAUDI ARABIAN OIL COMPANY and, MEMBRANE TECHNOLOGY AND RESEARCH
    Inventors: Milind M. Vaidya, Sebastien A. Duval, Feras Hamad, Richard Baker, Tim Merkel, Kaaeid Lokhandwala, Ivy Huang, Ahmad A. Bahamdan, Faisal D. Al-Otaibi
  • Patent number: 11420153
    Abstract: A process for recovering sulfur from a sour gas is provided. The process includes the steps of: providing the sour gas to a membrane separation unit having a carbon dioxide-selective membrane that comprises a perfluoropolymer, wherein the sour gas comprises carbon dioxide and at least 1 mol % hydrogen sulfide; separating the sour gas using the carbon dioxide-selective membrane in the membrane separation stage to obtain hydrogen sulfide-enriched gas and hydrogen sulfide-stripped gas, wherein the hydrogen sulfide-enriched gas has a hydrogen sulfide concentration of at least 20 mol %, and wherein the hydrogen sulfide-stripped gas comprises carbon dioxide; and processing the hydrogen sulfide-enriched gas in a sulfur recovery unit to obtain sulfur.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: August 23, 2022
    Assignees: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Milind M. Vaidya, Sebastien A. Duval, Feras Hamad, Richard Baker, Tim Merkel, Kaaeid Lokhandwala, Ahmad A. Bahamdan, Faisal D. Al-Otaibi
  • Patent number: 11325065
    Abstract: A process for recovering sulfur and carbon dioxide from a sour gas stream, the process comprising the steps of: providing a sour gas stream to a membrane separation unit, the sour gas stream comprising hydrogen sulfide and carbon dioxide; separating the hydrogen sulfide from the carbon dioxide in the membrane separation unit to obtain a retentate stream and a first permeate stream, wherein the retentate stream comprises hydrogen sulfide, wherein the permeate stream comprises carbon dioxide; introducing the retentate stream to a sulfur recovery unit; processing the retentate stream in the sulfur recovery unit to produce a sulfur stream and a tail gas stream, wherein the sulfur stream comprises liquid sulfur; introducing the permeate stream to an amine absorption unit; and processing the permeate stream in the amine absorption unit to produce an enriched carbon dioxide stream.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: May 10, 2022
    Assignees: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Milind M. Vaidya, Sebastien A. Duval, Feras Hamad, Richard Baker, Tim Merkel, Kaaeid Lokhandwala, Ahmad A. Bahamdan, Faisal D. Al-Otaibi
  • Publication number: 20200360855
    Abstract: A process for sweetening a syngas stream, the process comprising the steps of: providing a syngas stream to a nonselective amine absorption unit, the sour syngas stream comprising syngas, carbon dioxide, and hydrogen sulfide; separating the syngas stream in the nonselective amine absorption unit to obtain an overhead syngas stream and an acid gas stream; introducing the acid gas stream to a membrane separation unit, the acid gas stream comprising hydrogen sulfide and carbon dioxide; separating the acid gas stream in the membrane separation unit to produce a retentate stream and a permeate stream, wherein the retentate stream comprises hydrogen sulfide, wherein the permeate stream comprises carbon dioxide; introducing the retentate stream to a sulfur recovery unit; processing the retentate stream in the sulfur recovery unit to produce a sulfur stream and a tail gas stream, wherein the sulfur stream comprises liquid sulfur.
    Type: Application
    Filed: May 18, 2020
    Publication date: November 19, 2020
    Applicants: SAUDI ARABIAN OIL COMPANY, Membrane Technology and Research, Inc.
    Inventors: Milind M. VAIDYA, Sebastien A. DUVAL, Feras HAMAD, Richard BAKER, Tim MERKEL, Kaeeid LOKHANDWALA, Ivy HUANG, Ahmad A. BAHAMDAN, Faisal D. AL-OTAIBI
  • Publication number: 20200360854
    Abstract: A process for recovering sulfur and carbon dioxide from a sour gas stream, the process comprising the steps of: providing a sour gas stream to a membrane separation unit, the sour gas stream comprising hydrogen sulfide and carbon dioxide; separating the hydrogen sulfide from the carbon dioxide in the membrane separation unit to obtain a retentate stream and a first permeate stream, wherein the retentate stream comprises hydrogen sulfide, wherein the permeate stream comprises carbon dioxide; introducing the retentate stream to a sulfur recovery unit; processing the retentate stream in the sulfur recovery unit to produce a sulfur stream and a tail gas stream, wherein the sulfur stream comprises liquid sulfur; introducing the permeate stream to an amine absorption unit; and processing the permeate stream in the amine absorption unit to produce an enriched carbon dioxide stream.
    Type: Application
    Filed: May 18, 2020
    Publication date: November 19, 2020
    Applicants: SAUDI ARABIAN OIL COMPANY, Membrane Technology and Research, Inc.
    Inventors: Milind M. VAIDYA, Sebastien A. DUVAL, Feras HAMAD, Richard BAKER, Tim MERKEL, Kaeeid LOKHANDWALA, Ahmad A. BAHAMDAN, Faisal D. AL-OTAIBI
  • Publication number: 20200360853
    Abstract: A process for recovering sulfur from a sour gas is provided. The process includes the steps of: providing the sour gas to a membrane separation unit having a carbon dioxide-selective membrane that comprises a perfluoropolymer, wherein the sour gas comprises carbon dioxide and at least 1 mol % hydrogen sulfide; separating the sour gas using the carbon dioxide-selective membrane in the membrane separation stage to obtain hydrogen sulfide-enriched gas and hydrogen sulfide-stripped gas, wherein the hydrogen sulfide-enriched gas has a hydrogen sulfide concentration of at least 20 mol %, and wherein the hydrogen sulfide-stripped gas comprises carbon dioxide; and processing the hydrogen sulfide-enriched gas in a sulfur recovery unit to obtain sulfur.
    Type: Application
    Filed: May 18, 2020
    Publication date: November 19, 2020
    Applicants: SAUDI ARABIAN OIL COMPANY, Membrane Technology and Research, Inc.
    Inventors: Milind M. VAIDYA, Sebastien A. DUVAL, Feras HAMAD, Richard BAKER, Tim MERKEL, Kaeeid LOKHANDWALA, Ahmad A. BAHAMDAN, Faisal D. AL-OTAIBI
  • Publication number: 20060016750
    Abstract: A process for regenerating a facilitated-transport membrane, such as a gas separation membrane, that contains an ionic complexing agent, and that has lost performance as a result of reduction of at least some of the ions to a less charged or uncharged form. The process involves exposing the membrane to an oxidizing agent, such as hydrogen peroxide. The invention also includes membranes that have been regenerated in this way, and their use, particularly for separating light olefins from light paraffins by membrane gas separation.
    Type: Application
    Filed: July 15, 2005
    Publication date: January 26, 2006
    Applicant: Membrane Technology and Research Inc.
    Inventors: Tim Merkel, Roland Blanc