Patents by Inventor Tim Philipp HARDER

Tim Philipp HARDER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220386983
    Abstract: Method for assessing a position of a patient with respect to an automatic exposure control chamber, AEC chamber (11, 12), for a medical exam, wherein a patient is positioned between an X-ray source and the AEC chamber (11, 12); comprising the steps:—acquiring (S10) an X-ray image (32) of at least part of the patient, wherein the AEC chamber is configured for detecting a radiation dose of the X-ray source;—determining (S20), by the control unit, a position of the AEC chamber (11, 12) with respect to the patient from the acquired X-ray image (32);—determining (S30), by the control unit, an exam protocol performed on the patient dependent on the medical exam to be performed on the patient and determining, by the control unit, an ideal position of the AEC chamber (11, 12) with respect to the patient dependent on the exam protocol, wherein the ideal position relates to a position of the patient relative to the AEC chamber (11, 12), in which the detected radiation dose is reliable for the medical exam; and—determin
    Type: Application
    Filed: October 16, 2020
    Publication date: December 8, 2022
    Inventors: TIM PHILIPP HARDER, THOMAS BUELOW, STEWART YOUNG, JENS VON BERG, SVEN KROENKE, DANIEL BYSTROV, ANDRÉ GOOSSEN
  • Publication number: 20220375081
    Abstract: An apparatus (10) for manually auditing a set (30) of images having quality ratings (38) for an image quality metric assigned to the respective images of the set of images by an automatic quality assessment process (40) includes at least one electronic processor (20) programmed to: generate quality rating confidence values (42) indicative of confidence of the quality ratings for the respective images; select a subset (32) of the set of images for manual review based at least on the quality rating confidence values; and provide a user interface (UI) (27) via which only the subset of the set of images is presented and via which manual quality ratings (46) for the image quality metric are received for only the subset of the set of images.
    Type: Application
    Filed: October 27, 2020
    Publication date: November 24, 2022
    Inventors: THOMAS BUELOW, TIM PHILIPP HARDER, STEWART YOUNG
  • Patent number: 11348229
    Abstract: There is provided a computer-implemented method and system (100) for determining regions of hyperdense lung parenchyma in an image of a lung. The system (100) comprises a memory (106) comprising instruction data representing a set of instructions and a processor (102) configured to communicate with the memory and to execute the set of instructions. The set of instructions, when executed by the processor (102), cause the processor (102) to locate a vessel in the image, determine a density of lung parenchyma in a region of the image that neighbours the located vessel, and determine whether the region of the image comprises hyperdense lung parenchyma based on the determined density, hyperdense lung parenchyma having a density greater than ?800 HU.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: May 31, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rafael Wiemker, Axel Saalbach, Jens Von Berg, Tom Brosch, Tim Philipp Harder, Fabian Wenzel, Christopher Stephen Hall
  • Patent number: 11320508
    Abstract: The invention relates to a magnetic resonance imaging data processing system (126) for processing motion artifacts in magnetic resonance imaging data sets using a deep learning network (146, 502, 702) trained for the processing of motion artifacts in magnetic resonance imaging data sets. The magnetic resonance imaging data processing system (126) comprises a memory (134, 136) storing machine executable instructions (161, 164) and the trained deep learning network (146, 502, 702). Furthermore, the magnetic resonance imaging data processing system (126) comprises a processor (130) for controlling the magnetic resonance imaging data processing system.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: May 3, 2022
    Assignee: Koninklijke Philips N.V.
    Inventors: Karsten Sommer, Tom Brosch, Tim Philipp Harder, Jochen Keupp, Ingmar Graesslin, Rafael Wiemker, Axel Saalbach
  • Patent number: 11295451
    Abstract: An image processing system and related method. The system comprises an input interface (IN) configured for receiving an n[?2]-dimensional input image with a set of anchor points defined in same, said set of anchor points forming an input constellation. A constellation modifier (CM) is configured to modify said input constellation into a modified constellation. A constellation evaluator (CE) configured to evaluate said input constellation based on said hyper-surface to produce a score. A comparator (COMP) is configured to compare said score against a quality criterion. Through an output interface (OUT) said constellation is output if the score meets said criterion. The constellation suitable to define a segmentation for said input image.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: April 5, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rafael Wiemker, Tobias Klinder, Alexander Schmidt-Richberg, Axel Saalbach, Irina Waechter-Stehle, Tim Philipp Harder, Jens von Berg
  • Patent number: 11246660
    Abstract: A system and a method are provided for simulating a breast deformation of a subject using sensor data obtained from an orientation sensor of a mobile device, with the orientation sensor being configured for sensing an orientation of the mobile device with respect to a direction of gravity. In accordance with the system and method, model data is accessed which defines a biomechanical model of a breast. A simulation subsystem is provided for obtaining the sensor data from the orientation sensor of the mobile device and for determining a gravitational breast deformation by applying a gravitational force to the biomechanical model in a direction which is defined based on the orientation of the mobile device. A deformed model may be displayed on a display of the mobile device. The system and the method provide an intuitive way of simulating the breast deformation.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: February 15, 2022
    Assignee: Koninklijke Philips N.V.
    Inventors: Tim Philipp Harder, Thomas Buelow
  • Publication number: 20210366592
    Abstract: An apparatus (1), for use in conjunction with a medical imaging device (2) having an imaging device controller (4) that displays a graphical user interface (GUI) (8) including a preview image viewport (9), includes at least one electronic processor (20) programmed to: perform an image analysis (38) on a preview image displayed in the preview image viewport to generate preview-derived image label information; extract GUI-derived image label information from the GUI excluding the preview image displayed in the preview image viewport; and output an alert (30) when the preview-derived image label information and the GUI-derived image label information are not consistent.
    Type: Application
    Filed: April 15, 2021
    Publication date: November 25, 2021
    Inventors: Thomas BUELOW, Tanja NORDHOFF, Tim Philipp HARDER, Hrishikesh Narayanrao DESHPANDE, Olga STAROBINETS
  • Publication number: 20210338185
    Abstract: This application proposes an improved medical imaging device enabling a timely communication of critical findings. The medical imaging device comprises an image acquisition unit, adapted to acquire image data of a subject to be imaged. The medical imaging device further comprises a local data processing device having an artificial-intelligence-module, Al-module, adapted to automatically detect a finding on basis of the acquired image data and to determine a priority status of the detected finding. Further, the medical imaging device comprises a notification module, adapted to provide, if the determined priority status reaches or exceeds a notification threshold, a notification data containing the detected finding. The application further proposes a medical imaging system, a method of operating a medical imaging device, a computer program element and a computer-readable medium having stored the computer program element.
    Type: Application
    Filed: October 18, 2019
    Publication date: November 4, 2021
    Inventors: AXEL SAALBACH, TOM BROSCH, TIM Philipp HARDER, HRISHIKESH NARAYANRAO DESHPANDE, EVAN SCHWAB, IVO MATTEO BALTRUSCHAT, RAFAEL WIEMKER
  • Publication number: 20210295524
    Abstract: An image processing system and related method. The system comprises an input interface (IN) configured for receiving an n[?2]-dimensional input image with a set of anchor points defined in same, said set of anchor points forming an input constellation. A constellation modifier (CM) is configured to modify said input constellation into a modified constellation. A constellation evaluator (CE) configured to evaluate said input constellation based on said hyper-surface to produce a score. A comparator (COMP) is configured to compare said score against a quality criterion. Through an output interface (OUT) said constellation is output if the score meets said criterion. The constellation suitable to define a segmentation for said input image.
    Type: Application
    Filed: July 26, 2017
    Publication date: September 23, 2021
    Inventors: Rafael Wiemker, Tobias Klinder, Alexander Schmidt-Richberg, Axel Saalbach, Irina Waechter-Stehle, Tim Philipp Harder, Jens von Berg
  • Publication number: 20210181287
    Abstract: The invention relates to a magnetic resonance imaging data processing system (126) for processing motion artifacts in magnetic resonance imaging data sets using a deep learning network (146, 502, 702) trained for the processing of motion artifacts in magnetic resonance imaging data sets. The magnetic resonance imaging data processing system (126) comprises a memory (134, 136) storing machine executable instructions (161, 164) and the trained deep learning network (146, 502, 702). Furthermore, the magnetic resonance imaging data processing system (126) comprises a processor (130) for controlling the magnetic resonance imaging data processing system.
    Type: Application
    Filed: October 22, 2018
    Publication date: June 17, 2021
    Inventors: KARSTEN SOMMER, TOM BROSCH, TIM PHILIPP HARDER, JOCHEN KEUPP, INGMAR GRAESSLIN, RAFAEL WIEMKER, AXEL SAALBACH
  • Patent number: 11024028
    Abstract: The present invention relates to a device and method for quality assessment of medical image datasets.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: June 1, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas Buelow, Stewart Young, Tanja Nordhoff, Tim Philipp Harder, Jan-Hendrik Buhk
  • Publication number: 20210134465
    Abstract: A system for reviewing a prior medical image and a related prior medical report, including: a plurality of measurement tools configured to: receive an input medical image and information regarding a medical finding; analyze the input medical image to determine a measurement relating to the medical finding; and output the measurement relating to the medical finding; a report analyzer configured to: receive the prior medical report; analyze the prior medical report to extract first information regarding a first medical finding described in the medical report; select a first measurement tool of the plurality of measurement tools to analyze the prior medical image based upon the first extracted information; and output the first extracted information to the first measurement tool, wherein the first measurement tool analyzes the prior medical image to produce a first updated measurement of the first medical finding and the first measurement tool analyzes a new medical image associated with the prior medical image t
    Type: Application
    Filed: October 20, 2020
    Publication date: May 6, 2021
    Inventors: André GOOßEN, Axel SAALBACH, Rafael WIEMKER, Tim Philipp HARDER, Tom BROSCH, Hrishikesh Narayanrao DESHPANDE
  • Publication number: 20210065361
    Abstract: There is provided a computer-implemented method and system (100) for determining regions of hyperdense lung parenchyma in an image of a lung. The system (100) comprises a memory (106) comprising instruction data representing a set of instructions and a processor (102) configured to communicate with the memory and to execute the set of instructions. The set of instructions, when executed by the processor (102), cause the processor (102) to locate a vessel in the image, determine a density of lung parenchyma in a region of the image that neighbours the located vessel, and determine whether the region of the image comprises hyperdense lung parenchyma based on the determined density, hyperdense lung parenchyma having a density greater than ?800 HU.
    Type: Application
    Filed: September 4, 2018
    Publication date: March 4, 2021
    Inventors: Rafael WIEMKER, Axel SAALBACH, Jens VON BERG, Tom BROSCH, Tim Philipp HARDER, Fabian WENZEL, Christopher Stephen HALL
  • Publication number: 20200320705
    Abstract: The invention relates to a system for assessing a pulmonary image which allows for an improved assessment with respect to lung nodules detectability. The pulmonary image is smoothed for providing different pulmonary images (20, 21, 22) with different degrees of smoothing, wherein signal values and noise values, which are indicative of the lung vessel detectability and the noise in these images, are determined and used for determining an image quality being indicative of the usability of the pulmonary image to be assessed for detecting lung nodules. Since a pulmonary image shows lung vessels with many different vessel sizes and with many different image values, which cover the respective ranges of potential lung nodules generally very well, the image quality determination based on the different pulmonary images with different degrees of smoothing allows for a reliable assessment of the pulmonary image's usability for detecting lung nodules.
    Type: Application
    Filed: December 14, 2018
    Publication date: October 8, 2020
    Inventors: RAFAEL WIEMKER, TANJA NORDHOFF, THOMAS BUELOW, AXEL SAALBACH, TOBIAS KLINDER, TOM BROSCH, TIM PHILIPP HARDER, KARSTEN SOMMER
  • Patent number: 10627467
    Abstract: The invention provides for a magnetic resonance imaging system (100) for acquiring magnetic resonance data (154) from an imaging zone (108). The magnetic resonance imaging system comprises: a memory (136) for storing initial pulse sequence commands (140) and machine executable instructions (160); and a processor (130) for controlling the magnetic resonance imaging system. Execution of the machine executable instructions causes the processor to receive (200) a set of selected pulse sequence parameters (142) comprising a definition of a region of interest (109) of a subject (118). The region of interest is within the imaging zone. Execution of the machine executable instructions further causes the processor to send (202) an image data request to a historical database (138). The image data request comprises the set of selected pulse sequence parameters.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: April 21, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Tim Philipp Harder, Thomas Netsch
  • Publication number: 20200043616
    Abstract: A system includes an analytics unit (140), which compares a medical image (105) and associated information with a stored medical guideline (142), and identifies an error or a deviation (340) from the medical guideline based on the comparison.
    Type: Application
    Filed: December 6, 2017
    Publication date: February 6, 2020
    Inventors: AXEL SAALBACH, TIM PHILIPP HARDER, TANJA NORDHOFF, RAFAEL WIEMKER, FABIAN WENZEL, JENS VON BERG, IRINA WAECHTER-STEHLE
  • Publication number: 20200008704
    Abstract: The present disclosure relates to a method for configuring a medical device. The method comprises: providing a set of one or more parameters for configuring the medical device. Each parameter of the set has predefined values. A set of values of the set of parameters may be selected from the predefined values. Using the selected values the set of parameters may be set, which results in an operational configuration of the medical device. The medical device may be controlled to operate in accordance with the operational configuration, thereby an operating status of the medical device may be determined. Based on at least the operating status the operational configuration may be maintained or the selecting, setting and controlling may be repeatedly performed until a desired operating status of the medical device can be determined based on the operating statuses resulting from the controlling.
    Type: Application
    Filed: December 18, 2017
    Publication date: January 9, 2020
    Inventors: EBERHARD SEBASTIAN HANSIS, MICHAEL GUNTER HELLE, TIM PHILIPP HARDER, THOMAS NETSCH
  • Publication number: 20190313992
    Abstract: The present invention relates to an apparatus for providing mammography quality analytics. It is described to provide (210) at least one mammogram. A plurality of mammogram acquisition parameters is provided (220), wherein at least one mammogram acquisition parameter is associated with a corresponding mammogram. The at least one mammogram is analysed (230) and a plurality of breast positioning quality parameters is generated, wherein at least one breast positioning quality parameter is associated with a corresponding mammogram. The plurality of mammogram acquisition parameters and the plurality of breast positioning quality parameters is analysed (240) and quality control information is generated (240).
    Type: Application
    Filed: December 15, 2017
    Publication date: October 17, 2019
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas BUELOW, Tim Philipp HARDER, Tanja NORDHOFF, Stewart YOUNG, Deborah L RICHARD-KOWALSKI
  • Publication number: 20190244353
    Abstract: The present invention relates to a device and method for quality assessment of medical image datasets.
    Type: Application
    Filed: October 25, 2017
    Publication date: August 8, 2019
    Inventors: Thomas BUELOW, Stewart YOUNG, Tanja NORDHOFF, Tim Philipp HARDER, Jan-Hendrik BUHK
  • Publication number: 20190120920
    Abstract: The invention provides for a magnetic resonance imaging system (100) for acquiring magnetic resonance data (154) from an imaging zone (108). The magnetic resonance imaging system comprises: a memory (136) for storing initial pulse sequence commands (140) and machine executable instructions (160); and a processor (130) for controlling the magnetic resonance imaging system. Execution of the machine executable instructions causes the processor to receive (200) a set of selected pulse sequence parameters (142) comprising a definition of a region of interest (109) of a subject (118). The region of interest is within the imaging zone. Execution of the machine executable instructions further causes the processor to send (202) an image data request to a historical database (138). The image data request comprises the set of selected pulse sequence parameters.
    Type: Application
    Filed: April 12, 2017
    Publication date: April 25, 2019
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: TIM PHILIPP HARDER, THOMAS NETSCH