Patents by Inventor Tim Schroder

Tim Schroder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11719765
    Abstract: An embodiment of the invention relates to a sensor comprising a sensor element (10) for measuring a magnetic field, the sensor element (10) comprising a set of at least two first input ports (I1), a set of at least two exit ports (E) each of which is connected to one of the first input ports (I1) via a corresponding first beam path (B1), a set of at least two second input ports (I2) each of which is connected to a second beam path (B2), wherein the first beam paths (B1) extend through a common plane (CP) located inside the sensor element (10), said plane (CP) comprising a plurality of magneto-optically responsive defect centers, wherein the second beam paths (B2) also extend through said common plane (CP), but are angled with respect to the first beam paths (B1) such that a plurality of intersections between the first and second beam paths (B2) is defined, and wherein each intersection forms a sensor pixel (P) located at at least one of said magneto-optically responsive defect centers.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: August 8, 2023
    Assignees: Humboldt-Universität zu Berlin, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.
    Inventors: Tim Schröder, Felipe Perona Martinez, Julian Bopp, Moritz Kleinert, Hauke Conradi
  • Publication number: 20220390529
    Abstract: An embodiment of the invention relates to a sensor comprising a sensor element (10) for measuring a magnetic field, the sensor element (10) comprising a set of at least two first input ports (I1), a set of at least two exit ports (E) each of which is connected to one of the first input ports (I1) via a corresponding first beam path (B1), a set of at least two second input ports (I2) each of which is connected to a second beam path (B2), wherein the first beam paths (B1) extend through a common plane (CP) located inside the sensor element (10), said plane (CP) comprising a plurality of magneto-optically responsive defect centers, wherein the second beam paths (B2) also extend through said common plane (CP), but are angled with respect to the first beam paths (B1) such that a plurality of intersections between the first and second beam paths (B2) is defined, and wherein each intersection forms a sensor pixel (P) located at at least one of said magneto-optically responsive defect centers.
    Type: Application
    Filed: May 6, 2022
    Publication date: December 8, 2022
    Applicants: Humboldt-Universität zu Berlin, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Tim SCHRÖDER, Felipe PERONA MARTINEZ, Julian BOPP, Moritz KLEINERT, Hauke CONRADI
  • Patent number: 9709440
    Abstract: Multimode interference can be used to achieve ultra-high resolving powers (e.g., Q>105) with linewidths down to 10 pm at 1500 nm and a broad spectroscopy range (e.g., 400-2400 nm) within a monolithic, millimeter-scale device. For instance, multimode interference (MMI) in a tapered waveguide enables fine resolution and broadband spectroscopy in a compact, monolithic device. The operating range is limited by the transparency of the waveguide material and the sensitivity of the camera; thus, the technique can be easily extended into the ultraviolet and mid- and deep-infrared spectrum. Experiments show that a tapered fiber multimode interference spectrometer can operate across a range from 500 nm to 1600 nm (B=1.0576) without moving parts. The technique is suitable for on-chip tapered multimode waveguides, which could be fabricated in high volume by printing or optical lithography, for applications from biochemical sensing to the life and physical sciences.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: July 18, 2017
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Dirk Robert Englund, Edward H. Chen, Fan Meng, Tim Schroder, Noel Heng Loon Wang, Ren-Jye Shiue
  • Publication number: 20150168217
    Abstract: Multimode interference can be used to achieve ultra-high resolving powers (e.g., Q>105) with linewidths down to 10 pm at 1500 nm and a broad spectroscopy range (e.g., 400-2400 nm) within a monolithic, millimeter-scale device. For instance, multimode interference (MMI) in a tapered waveguide enables fine resolution and broadband spectroscopy in a compact, monolithic device. The operating range is limited by the transparency of the waveguide material and the sensitivity of the camera; thus, the technique can be easily extended into the ultraviolet and mid- and deep-infrared spectrum. Experiments show that a tapered fiber multimode interference spectrometer can operate across a range from 500 nm to 1600 nm (B=1.0576) without moving parts. The technique is suitable for on-chip tapered multimode waveguides, which could be fabricated in high volume by printing or optical lithography, for applications from biochemical sensing to the life and physical sciences.
    Type: Application
    Filed: July 8, 2014
    Publication date: June 18, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Dirk Robert Englund, Edward H. Chen, Fan Meng, Tim Schroder, Noel Heng Loon Wang, Ren-Jye Shiue
  • Patent number: 8842949
    Abstract: An embodiment of the invention relates to a single photon emission system having a proximal end, a distal end, and a single photon emitter located between the proximal end and the distal end; wherein the single photon emission system is adapted to guide optical pump radiation, which is inputted at the proximal end to optically excite the single photon emitter, along a predefined direction that runs from the proximal end to the distal end; and wherein single photons emitted by said single photon emitter, are guided along said predefined direction to the distal end.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: September 23, 2014
    Assignees: Technische Universitat Darmstadt, Humbolt-Universitat zu Berlin
    Inventors: Tim Schröder, Oliver Benson, Andreas Schell, Philip Engel, Moritz Julian Banholzer, Friedemann Gädeke, Gerhard Birkl
  • Publication number: 20120056111
    Abstract: An embodiment of the invention relates to a single photon emission system having a proximal end, a distal end, and a single photon emitter located between the proximal end and the distal end; wherein the single photon emission system is adapted to guide optical pump radiation, which is inputted at the proximal end to optically excite the single photon emitter, along a predefined direction that runs from the proximal end to the distal end; and wherein single photons emitted by said single photon emitter, are guided along said predefined direction to the distal end.
    Type: Application
    Filed: September 2, 2010
    Publication date: March 8, 2012
    Inventors: Tim SCHRÖDER, Oliver BENSON, Andreas SCHELL, Philip ENGEL, Moritz Julian BANHOLZER, Friedemann GÄDEKE, Gerhard BIRKL