Patents by Inventor Timo Kober

Timo Kober has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10458874
    Abstract: A pressure difference sensor for providing a pressure measurement signal, comprising: a pressure difference measuring cell, which is suppliable with first and second pressures and which outputs the pressure measurement signal; first and second ceramic stiffening elements, each of which is joined with the pressure difference measuring cell and has a duct, via which the first, respectively the second, pressure is suppliable to the pressure difference measuring cell; a platform with first and second pressure input openings, each of which extends from a first surface to a second surface of the platform, wherein the pressure input openings are sealed on the first surface, each with its own isolating diaphragm, and first and second pressures tubes, which are arranged between the stiffening elements and the platform, and wherein each of the first pressure tube and the second pressure tube has at least one bend in a region between the platform and a first, respectively second, connecting area of the corresponding pre
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: October 29, 2019
    Assignee: ENDRESS+HAUSER SE+CO.KG
    Inventors: Timo Kober, Benjamin Lemke, Rafael Teipen, Benjamin Mack
  • Publication number: 20190170595
    Abstract: A pressure difference sensor for determining a pressure measurement signal includes a measuring cell made from a semiconductor material. The measuring cell is suppliable with first and second pressures and, using an electrical transducer element, outputs the pressure measurement signal as a function of a difference between the first and second pressures. First and second stiffening elements of a ceramic or semiconductor material are each joined with the pressure difference measuring cell by a respective first or second joining layer and have a respective first or second duct, via which the respective first or second pressure is suppliable to the pressure difference measuring cell. The first and/or the second joining layer comprise(s) an electrically conductive material and serve(s) for the mechanical connecting of the pressure difference measuring cell with the first and second stiffening elements and for implementing an electrical functionality.
    Type: Application
    Filed: June 26, 2017
    Publication date: June 6, 2019
    Inventors: Timo Kober, Benjamin Lemke
  • Patent number: 10288508
    Abstract: The pressure sensor of the invention includes at least one platform, at least one measuring membrane 30, and a transducer, wherein the measuring membrane comprises a semiconductor material, wherein the measuring membrane, enclosing a pressure chamber, is secured on the platform, wherein the measuring membrane is contactable with at least one pressure and is elastically deformable in a pressure-dependent manner, wherein the transducer provides an electrical signal dependent on deformation of the measuring membrane, wherein the platform has a membrane bed, on which the measuring membrane lies in the case of overload, in order to support the measuring membrane, wherein the membrane bed 21 has a glass layer 20, whose surface faces the measuring membrane and forms a wall of the pressure chamber, wherein the surface of the glass layer has a contour, which is suitable for supporting the measuring membrane 30 in the case of overload, characterized in that the contour of the membrane bed 21 is obtainable by a sagging
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: May 14, 2019
    Assignee: ENDRESS+HAUSER SE+CO.KG
    Inventors: Timo Kober, Michael Philipps, Dieter Stolze, Anh Tuan Tham, Roland Werthschutzky
  • Patent number: 10267700
    Abstract: A high-precision pressure sensor, having a first base body that has two electrically conductive layers and an insulation layer arranged between the two layers and electrically insulating the two layers from one another, an electrically conductive measurement membrane arranged on the first base body with inclusion of a pressure chamber, which measurement membrane can be charged with a pressure to be measured, and an electrode provided in the membrane-facing layer and spaced apart from the measurement membrane, which electrode together with the measurement membrane forms a capacitor having a capacitance that varies according to the pressure acting upon the measurement membrane.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: April 23, 2019
    Assignee: ENDRESS+HAUSER SE+CO.KG
    Inventors: Rafael Teipen, Benjamin Lemke, Timo Kober, Lars Karweck, Stefan Rummele-Werner, Thomas Zieringer
  • Patent number: 10067024
    Abstract: A differential pressure sensor comprises a measuring diaphragm made of an electrically conductive material, two electrically insulating mating bodies, and at least one capacitive transducer. The measuring diaphragm is connected to the mating bodies in a pressure-tight manner with the formation of a measuring chamber in each case along a circumferential edge. The mating bodies each have a diaphragm bed which is concave in the center, wherein the mating bodies each have a pressure channel which extends through the mating body into the measuring chamber. The capacitive transducer has at least one mating body electrode which is formed by a metallic coating of the surface of the mating body in the region of the diaphragm bed and with which contact can be made by a metallic coating of the wall of the pressure channel.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: September 4, 2018
    Assignee: ENDRESS + HAUSER GMBH + CO. KG
    Inventors: Bernhard Jochem, Timo Kober, Benjamin Lemke, Darina Riemer Woyczehowski, Rafael Teipen, Anh Tuan Tham, Roland Werthschutzky
  • Publication number: 20180031434
    Abstract: A pressure difference sensor for providing a pressure measurement signal, comprising: a pressure difference measuring cell, which is suppliable with first and second pressures and which outputs the pressure measurement signal; first and second ceramic stiffening elements, each of which is joined with the pressure difference measuring cell and has a duct, via which the first, respectively the second, pressure is suppliable to the pressure difference measuring cell; a platform with first and second pressure input openings, each of which extends from a first surface to a second surface of the platform, wherein the pressure input openings are sealed on the first surface, each with its own isolating diaphragm, and first and second pressures tubes, which are arranged between the stiffening elements and the platform, and wherein each of the first pressure tube and the second pressure tube has at least one bend in a region between the platform and a first, respectively second, connecting area of the corresponding pre
    Type: Application
    Filed: July 18, 2017
    Publication date: February 1, 2018
    Inventors: Timo Kober, Benjamin Lemke, Rafael Teipen, Benjamin Mack
  • Publication number: 20170315008
    Abstract: A high-precision pressure sensor, having a first base body that has two electrically conductive layers and an insulation layer arranged between the two layers and electrically insulating the two layers from one another, an electrically conductive measurement membrane arranged on the first base body with inclusion of a pressure chamber, which measurement membrane can be charged with a pressure to be measured, and an electrode provided in the membrane-facing layer and spaced apart from the measurement membrane, which electrode together with the measurement membrane forms a capacitor having a capacitance that varies according to the pressure acting upon the measurement membrane.
    Type: Application
    Filed: September 2, 2015
    Publication date: November 2, 2017
    Inventors: Rafael TEIPEN, Benjamin LEMKE, Timo KOBER, Lars KARWECK, Stefan RÜMMELE-WERNER, Thomas ZIERINGER
  • Publication number: 20170167936
    Abstract: A differential pressure sensor comprises a measuring diaphragm made of an electrically conductive material, two electrically insulating mating bodies, and at least one capacitive transducer. The measuring diaphragm is connected to the mating bodies in a pressure-tight manner with the formation of a measuring chamber in each case along a circumferential edge. The mating bodies each have a diaphragm bed which is concave in the center, wherein the mating bodies each have a pressure channel which extends through the mating body into the measuring chamber. The capacitive transducer has at least one mating body electrode which is formed by a metallic coating of the surface of the mating body in the region of the diaphragm bed and with which contact can be made by a metallic coating of the wall of the pressure channel.
    Type: Application
    Filed: November 3, 2014
    Publication date: June 15, 2017
    Inventors: Bernhard Jochem, Timo Kober, Benjamin Lemke, Darina Riemer Woyczehowski, Rafael Teipen, Anh Tuan Tham, Roland Werthschutzky
  • Publication number: 20170074735
    Abstract: The pressure sensor of the invention includes at least one platform, at least one measuring membrane 30, and a transducer, wherein the measuring membrane comprises a semiconductor material, wherein the measuring membrane, enclosing a pressure chamber, is secured on the platform, wherein the measuring membrane is contactable with at least one pressure and is elastically deformable in a pressure-dependent manner, wherein the transducer provides an electrical signal dependent on deformation of the measuring membrane, wherein the platform has a membrane bed, on which the measuring membrane lies in the case of overload, in order to support the measuring membrane, wherein the membrane bed 21 has a glass layer 20, whose surface faces the measuring membrane and forms a wall of the pressure chamber, wherein the surface of the glass layer has a contour, which is suitable for supporting the measuring membrane 30 in the case of overload, characterized in that the contour of the membrane bed 21 is obtainable by a sagging
    Type: Application
    Filed: November 2, 2016
    Publication date: March 16, 2017
    Applicant: ENDRESS+HAUSER GmbH + Co. KG
    Inventors: TIMO KOBER, MICHAEL PHILIPPS, DIETER STOLZE, ANH TUAN THAM, ROLAND WERTHSCHUTZKY
  • Publication number: 20120279310
    Abstract: The pressure sensor of the invention includes at least one platform, at least one measuring membrane 30, and a transducer, wherein the measuring membrane comprises a semiconductor material, wherein the measuring membrane, enclosing a pressure chamber, is secured on the platform, wherein the measuring membrane is contactable with at least one pressure and is elastically deformable in a pressure-dependent manner, wherein the transducer provides an electrical signal dependent on deformation of the measuring membrane, wherein the platform has a membrane bed, on which the measuring membrane lies in the case of overload, in order to support the measuring membrane, wherein the membrane bed 21 has a glass layer 20, whose surface faces the measuring membrane and forms a wall of the pressure chamber, wherein the surface of the glass layer has a contour, which is suitable for supporting the measuring membrane 30 in the case of overload, characterized in that the contour of the membrane bed 21 is obtainable by a sagging
    Type: Application
    Filed: October 7, 2010
    Publication date: November 8, 2012
    Applicant: Endress + Hauser GmbH + Co. KG
    Inventors: Timo Kober, Michael Philipps, Dieter Stolze, Anh Tuan Tham, Roland Werthschutzky