Patents by Inventor Timo Kratzer

Timo Kratzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11906820
    Abstract: A spectacle lens for at least one eye of a user, a method for producing a spectacle lens, and a computer program product having executable instructions for performing the method for producing the spectacle lens are disclosed. The spectacle lens has a permanent marking which is or contains a diffractive structure, wherein a diffractive pattern generated by illumination of the diffractive structure is configured to be invisible upon a first kind of illumination and configured to be visible only upon a second kind of illumination. The permanent markings on the spectacle lens are, on one hand, invisible to the user or to a spectator looking at the user wearing the spectacle lens without utilizing specially selected optical aids but, on the other hand, enables continued control of the spectacle lens in front of the eye of the user by an optician or a specifically designated optical sensor.
    Type: Grant
    Filed: March 28, 2023
    Date of Patent: February 20, 2024
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Katharina Rifai, Siegfried Wahl, Timo Kratzer
  • Patent number: 11809023
    Abstract: A spectacle lens for at least one eye of a user, a method for producing a spectacle lens, and a computer program product having executable instructions for performing the method for producing the spectacle lens are disclosed. The spectacle lens has a permanent marking which is or contains a diffractive structure, wherein a diffractive pattern generated by illumination of the diffractive structure is configured to be invisible upon a first kind of illumination and configured to be visible only upon a second kind of illumination. The permanent markings on the spectacle lens are, on one hand, invisible to the user or to a spectator looking at the user wearing the spectacle lens without utilizing specially selected optical aids but, on the other hand, enables continued control of the spectacle lens in front of the eye of the user by an optician or a specifically designated optical sensor.
    Type: Grant
    Filed: February 8, 2023
    Date of Patent: November 7, 2023
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Katharina Rifai, Siegfried Wahl, Timo Kratzer
  • Patent number: 11782293
    Abstract: A progressive addition lens contains a plurality of microlenses for providing simultaneous myopic defocus. The microlenses are superimposed on a power variation surface of the lens, which includes a designated distance portion in the upper section of the lens adapted for distance vision and a fitting cross; a designated near portion located in the lower section of the lens, the near portion including a near reference point having a near dioptric power adapted for near vision; and a designated intermediate corridor extending between the designated distance portion and near portions. Microlenses are excluded from all areas of the surface located below a notional line extending from nasal to temporal limits of the lens at a vertical coordinate above the near reference point where the vertical coordinate lies at a distance above the near reference point with the distance being in a range between 1.5 mm and 3 mm.
    Type: Grant
    Filed: January 25, 2023
    Date of Patent: October 10, 2023
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Saulius Raymond Varnas, Ray Steven Spratt, Timo Kratzer, Gerhard Kelch, Siegfried Wahl
  • Publication number: 20230236438
    Abstract: A spectacle lens for at least one eye of a user, a method for producing a spectacle lens, and a computer program product having executable instructions for performing the method for producing the spectacle lens are disclosed. The spectacle lens has a permanent marking which is or contains a diffractive structure, wherein a diffractive pattern generated by illumination of the diffractive structure is configured to be invisible upon a first kind of illumination and configured to be visible only upon a second kind of illumination. The permanent markings on the spectacle lens are, on one hand, invisible to the user or to a spectator looking at the user wearing the spectacle lens without utilizing specially selected optical aids but, on the other hand, enables continued control of the spectacle lens in front of the eye of the user by an optician or a specifically designated optical sensor.
    Type: Application
    Filed: March 28, 2023
    Publication date: July 27, 2023
    Inventors: Katharina Rifai, Siegfried Wahl, Timo Kratzer
  • Publication number: 20230194893
    Abstract: A spectacle lens for at least one eye of a user, a method for producing a spectacle lens, and a computer program product having executable instructions for performing the method for producing the spectacle lens are disclosed. The spectacle lens has a permanent marking which is or contains a diffractive structure, wherein a diffractive pattern generated by illumination of the diffractive structure is configured to be invisible upon a first kind of illumination and configured to be visible only upon a second kind of illumination. The permanent markings on the spectacle lens are, on one hand, invisible to the user or to a spectator looking at the user wearing the spectacle lens without utilizing specially selected optical aids but, on the other hand, enables continued control of the spectacle lens in front of the eye of the user by an optician or a specifically designated optical sensor.
    Type: Application
    Filed: February 8, 2023
    Publication date: June 22, 2023
    Inventors: Katharina Rifai, Siegfried Wahl, Timo Kratzer
  • Publication number: 20230161177
    Abstract: A progressive addition lens contains a plurality of microlenses for providing simultaneous myopic defocus. The microlenses are superimposed on a power variation surface of the lens, which includes a designated distance portion in the upper section of the lens adapted for distance vision and a fitting cross; a designated near portion located in the lower section of the lens, the near portion including a near reference point having a near dioptric power adapted for near vision; and a designated intermediate corridor extending between the designated distance portion and near portions. Microlenses are excluded from all areas of the surface located below a notional line extending from nasal to temporal limits of the lens at a vertical coordinate above the near reference point where the vertical coordinate lies at a distance above the near reference point with the distance being in a range between 1.5 mm and 3 mm.
    Type: Application
    Filed: January 25, 2023
    Publication date: May 25, 2023
    Inventors: Saulius Raymond Varnas, Ray Steven Spratt, Timo Kratzer, Gerhard Kelch, Siegfried Wahl
  • Publication number: 20230062220
    Abstract: Methods for dispensing eyeglasses are disclosed. The methods involve making a subjective refraction and an objective refraction and sending the information to a calculation computer to combine both refractions to calculate the person's prescription. The person's prescription is subsequently sent to a manufacturing location separate from the calculation computer for manufacture of the lenses.
    Type: Application
    Filed: October 19, 2022
    Publication date: March 2, 2023
    Inventors: Timo Kratzer, Herbert Krug, Jesús-Miguel Cabeza-Guillén, Harald Ruenz
  • Patent number: 11521174
    Abstract: Methods for dispensing eyeglasses are disclosed. The methods involve making a subjective refraction and an objective refraction and Sending the information to a calculation computer to combine both retractions to calculate the person's prescription. The person's prescription is subsequently sent to a manufacturing location separate from the calculation computer for manufacture of the lenses.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: December 6, 2022
    Assignee: Carl Zeiss Vision GmbH
    Inventors: Timo Kratzer, Herbert Krug, Jesus-Miguel Cabeza-Guillen, Harald Ruenz
  • Patent number: 11126013
    Abstract: A spectacle lens has an object-side front surface and an eye-side rear surface and is made of a base material that includes an ultraviolet (UV) absorber, which functions as a band-stop filter for UV light. In a first variant, the band-stop filter has an upper cut-off wavelength between 325 nm and 360 with a transmittance of 2% for light which is incident on the front surface, transmitted through the spectacle lens, and emerges from the rear surface for each angle of incidence between 0° and 15°. Additionally or alternatively, in a second variant, the spectacle lens has an antireflective coating with a reflectance below 5% for UV light in a wavelength range between 280 nm and a threshold wavelength, which lies between 325 nm and 350 nm, and a reflectance of 5% at the threshold wavelength for each angle of incidence between 30° and 45°.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: September 21, 2021
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Michael Krause, Thomas Glöge, Christian Lappe, Timo Kratzer, Siegfried Wahl
  • Patent number: 10881292
    Abstract: The invention is directed to a system for determining the refractive properties of an eye. The system includes a wavefront measurement device for measuring the refractive properties of the eye. The system is configured to have at least one measurement mode assigned to children, wherein the system has an input device configured to switch the system into one of the at least one measurement mode assigned to children. The system is further configured to alter at least one of a group including a default pupillary distance, a default cornea vertex distance, a default position of the wavefront measurement device, a default position and/or direction of a measurement ray of the wavefront measurement device, a default position of a forehead and chin rest assembly of the system and a fixation target when the system is switched into the one of the at least one measurement mode assigned to children.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: January 5, 2021
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Monique Welscher, Timo Kratzer
  • Patent number: 10838230
    Abstract: The invention is directed to a method for making a spectacle lens for a non-presbyopic person wherein the spectacle lens is a ready-to-wear lens and has at least one zone having an optical effect to reduce vision stress. In the method, at least one of the following is provided: the contour of the ready-to-wear spectacle lens and one or several visual points whereat the person looks through the ready-to-wear spectacle lens for one or several visual tasks in the near range. This method step is followed by setting at least one of: a design reference point of the zone, the extent of the zone, the optical effect within the zone based on the provided contour, and the visual points. The spectacle lens is then made with this zone.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: November 17, 2020
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Herbert Krug, Timo Kratzer
  • Patent number: 10718956
    Abstract: In an eyeglass lens, an edge adjustment between an incoupling segment and an outcoupling structure can be provided by shaping of the inner surface. In the region of the eyeglass lens through which the eye looks for straight-ahead viewing, the inner surface substantially has a curvature that approximates the curvature of a typical inner surface of an eyeglass lens to such an extent that no perceptible optical imaging errors are induced by the inner surface when straight-ahead viewing. In the region of the edge adjustment, the inner surface has a shape that deviates to a greater extent from the curvature of the typical inner surface, which shape enables an imaging beam path coupled into the eyeglass lens by the incoupling segment to be directed to the outcoupling structure by reflections between the inner surface and the outer surface of the eyeglass lens.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: July 21, 2020
    Assignee: tooz technologies GmbH
    Inventors: Hans-Juergen Dobschal, Karsten Lindig, Ralf Meschenmoser, Timo Kratzer
  • Patent number: 10663764
    Abstract: A method for manufacturing a spectacle lens includes the steps of providing an integral main lens. The integral main lens has a front surface and a back surface and is at least one selected from a group consisting of a spherical power lens, an astigmatic power lens, and a lens having a main curvature of the front surface in a first meridian and a main curvature of the back surface in the first meridian which are different so as to provide for a spherical power different from zero; and applying at least one additional lens element to at least a part of the front surface and/or at least a part of the back surface, wherein the at least one additional lens element includes at least one layer having a multitude of layer elements, in particular printed layer elements. Further, the invention is directed to a corresponding spectacle lens.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: May 26, 2020
    Assignees: Carl Zeiss Vision International GmbH, Carl Zeiss Vision Ireland Ltd.
    Inventors: Ralf Meschenmoser, Timo Kratzer, Paraic Begley, Stephen Brown
  • Patent number: 10433724
    Abstract: The invention relates to a method and an apparatus for determining the location of at least two optical parameters of an eye of a test person. In the method, at least two optical parameters of an eye having a reference structure are photographically recorded to determine in each case one of the optical parameters of the eye. The apparatus for determining at least two optical parameters of an eye having a reference structure is provided with separate recording units for photographically recording the eye for the determination of in each case one of the optical parameters of the eye.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: October 8, 2019
    Assignee: Carl Zeiss Vision GmbH
    Inventors: Timo Kratzer, Jesus-Miguel Cabeza-Guillen, Gerhard Kelch
  • Patent number: 10247960
    Abstract: The invention is directed to a method for making a spectacle lens for a non-presbyopic person wherein the spectacle lens is a ready-to-wear lens and has at least one zone having an optical effect to reduce vision stress. In the method, at least one of the following is provided: the contour of the ready-to-wear spectacle lens and one or several visual points whereat the person looks through the ready-to-wear spectacle lens for one or several visual tasks in the near range. This method step is followed by setting at least one of: a design reference point of the zone, the extent of the zone, the optical effect within the zone based on the provided contour, and the visual points. The spectacle lens is then made with this zone.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: April 2, 2019
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Herbert Krug, Timo Kratzer
  • Publication number: 20190086692
    Abstract: The invention is directed to a method for making a spectacle lens for a non-presbyopic person wherein the spectacle lens is a ready-to-wear lens and has at least one zone having an optical effect to reduce vision stress. In the method, at least one of the following is provided: the contour of the ready-to-wear spectacle lens and one or several visual points whereat the person looks through the ready-to-wear spectacle lens for one or several visual tasks in the near range. This method step is followed by setting at least one of: a design reference point of the zone, the extent of the zone, the optical effect within the zone based on the provided contour, and the visual points. The spectacle lens is then made with this zone.
    Type: Application
    Filed: November 20, 2018
    Publication date: March 21, 2019
    Inventors: Herbert Krug, Timo Kratzer
  • Publication number: 20190072786
    Abstract: A spectacle lens has an object-side front surface and an eye-side rear surface and is made of a base material that includes an ultraviolet (UV) absorber, which functions as a band-stop filter for UV light. In a first variant, the band-stop filter has an upper cut-off wavelength between 325 nm and 360 with a transmittance of 2% for light which is incident on the front surface, transmitted through the spectacle lens, and emerges from the rear surface for each angle of incidence between 0° and 15°. Additionally or alternatively, in a second variant, the spectacle lens has an antireflective coating with a reflectance below 5% for UV light in a wavelength range between 280 nm and a threshold wavelength, which lies between 325 nm and 350 nm, and a reflectance of 5% at the threshold wavelength for each angle of incidence between 30° and 45°.
    Type: Application
    Filed: November 7, 2018
    Publication date: March 7, 2019
    Inventors: Michael Krause, Thomas Glöge, Christian Lappe, Timo Kratzer, Siegfried Wahl
  • Patent number: 10185161
    Abstract: Spectacles include a spectacles lens having a carrier lens with a carrier lens front surface and/or a carrier lens rear surface, and having a front surface lens segment arranged on the carrier lens front surface and/or a rear surface lens segment arranged on the carrier lens rear surface, which are moveably guided on the carrier lens front surface and/or the rear surface lens segment, respectively. Further, the spectacles include a front/rear surface lens segment drive for moving the front/rear surface lens segment on the carrier lens front/rear surface, respectively; an eye position detection device for detecting the position of an eye of a wearer wearing the spectacles; and a drive control device for controlling the front and/or rear surface lens segment drive in accordance with the position of the eye detected by the eye position detection device.
    Type: Grant
    Filed: April 8, 2018
    Date of Patent: January 22, 2019
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Jeremias Gromotka, Timo Kratzer, Gerhard Kelch
  • Patent number: 10168549
    Abstract: An optical visual aid is disclosed that assists an observer looking at an object through at least one spectacle lens. The optical visual aid has a dioptric power matched to an eye of the observer for at least one viewing direction. The dioptric power is composed of a plurality of dioptric power components. A first dioptric power component of the plurality of dioptric power components has a best possible corrective power for the eye of the observer at a defined distance of the object from the corneal vertex of the eye for the viewing direction. At the same time, a further dioptric power component of the plurality of dioptric power components has an additional astigmatic, partly corrective power for the viewing direction for the eye of the observer at the defined distance.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: January 1, 2019
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Arne Ohlendorf, Rainer Sessner, Timo Kratzer, Katharina Rifai, Christian Lappe
  • Patent number: 10146064
    Abstract: An apparatus is for ascertaining and outputting a type of spectacle lens suitable for a spectacle wearer with a visual characteristics providing device, for providing visual characteristics of the spectacle wearer, a needs providing device, for providing individual needs of the spectacle wearer, a spectacle lens type providing device, for providing a plurality of types of spectacle lenses having predetermined characteristics, a desired characteristics ascertaining device, for ascertaining desired characteristics of a type of spectacle lens using the provided visual characteristics and the provided individual needs of the spectacle wearer, an assigning device, for assigning at least one type of spectacle lens from among the plurality of types of spectacle lenses to the desired characteristics, on the basis of predetermined assignment rules, and a spectacle lens type outputting device, for outputting the at least one assigned type of spectacle lens.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: December 4, 2018
    Assignees: Carl Zeiss Vision International GmbH, Carl Zeiss Vision Ireland Ltd., Carl Zeiss Vision Inc.
    Inventors: Konrad Saur, Paraic Begley, Ray Steven Spratt, Timo Kratzer