Patents by Inventor Timothy A. Brandvold

Timothy A. Brandvold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130152454
    Abstract: Methods for deoxygenating a biomass-derived pyrolysis oil are provided. In an embodiment, a method for deoxygenating a biomass-derived pyrolysis oil comprises the steps of combining a biomass-derived pyrolysis oil stream with a heated low-oxygen-pyoil diluent recycle stream to form a heated diluted pyoil feed stream. The heated diluted pyoil feed stream has a feed temperature of about 150° C. or greater. The heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 20, 2013
    Applicant: UOP LLC
    Inventors: Lance Awender Baird, Timothy A. Brandvold, Francis Stephen Lupton
  • Publication number: 20130030230
    Abstract: Embodiments of methods and apparatuses for producing and aromatic hydrocarbon-rich effluent from a lignocellulosic material are provided herein. The method comprises the step of combining the lignocellulosic material and an aromatic hydrocarbon-rich diluent to form a slurry. Hydrogen in the presence of a catalyst is contacted with the slurry at reaction conditions to form the aromatic hydrocarbon-rich effluent.
    Type: Application
    Filed: July 26, 2011
    Publication date: January 31, 2013
    Applicant: UOP LLC
    Inventors: Timothy A. Brandvold, Mark Koch
  • Publication number: 20130025187
    Abstract: Processes for producing reduced acid lignocellulosic-derived pyrolysis oil are provided. In a process, lignocellulosic material is fed to a heating zone. A basic solid catalyst is delivered to the heating zone. The lignocellulosic material is pyrolyzed in the presence of the basic solid catalyst in the heating zone to create pyrolysis gases. The oxygen in the pyrolysis gases is catalytically converted to separable species in the heating zone. The pyrolysis gases are removed from the heating zone and are liquefied to form the reduced acid lignocellulosic-derived pyrolysis oil.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Applicant: UOP LLC
    Inventors: Joseph Anthony Kocal, Timothy A. Brandvold
  • Publication number: 20120317871
    Abstract: Embodiments of methods and apparatuses for forming a low-metal biomass-derived pyrolysis oil are provided. The method comprises the steps of filtering a biomass-derived pyrolysis oil with a high flux rate filter arrangement having a flux rate of about 10 L/m2/hr or greater to form a low-solids biomass-derived pyrolysis oil. The low-solids biomass-derived pyrolysis oil is filtered with a fine filter arrangement having a pore diameter of about 50 ?m or less to form an ultralow-solids biomass-derived pyrolysis oil. The ultralow-solids biomass-derived pyrolysis oil is contacted with an ion-exchange resin to remove metal ions and form the low-metal biomass-derived pyrolysis oil.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 20, 2012
    Applicant: UOP LLC
    Inventors: Stanley Joseph Frey, Rajeswar Gattupalli, Timothy A. Brandvold
  • Patent number: 8329967
    Abstract: A process for producing a blended fuel from a paraffin rich component and a cyclic rich component, where each of the components are generated from a renewable feedstock, is presented. The paraffin rich component is generated from glycerides and free fatty acids in feedstocks such as plant and animal oils. The cyclic rich component is generated from biomass derived pyrolysis oil. The source of the animal or plant oil and the biomass may be the same renewable source.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: December 11, 2012
    Assignee: UOP LLC
    Inventors: Timothy A. Brandvold, Michael J. McCall
  • Patent number: 8329969
    Abstract: A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: December 11, 2012
    Assignee: UOP LLC
    Inventors: Michael J. McCall, Timothy A. Brandvold, Douglas C. Elliott
  • Patent number: 8329968
    Abstract: A process for producing at least one blended fuel from a paraffin rich component and a cyclic rich component, where each of the components are generated from a renewable feedstock, is presented. The paraffin rich component is generated from glycerides and free fatty acids in feedstocks such as plant and animal oils. The cyclic rich component is generated from biomass derived pyrolysis oil. The source of the animal or plant oil and the biomass may be the same renewable source.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: December 11, 2012
    Assignee: UOP LLC
    Inventors: Timothy A. Brandvold, Michael J. McCall
  • Publication number: 20120305836
    Abstract: Embodiments of methods and catalysts for deoxygenating a biomass-derived pyrolysis oil are provided. The method comprises the step of contacting the biomass-derived pyrolysis oil with a first deoxygenating catalyst in the presence of hydrogen at first predetermined hydroprocessing conditions to form a first low-oxygen biomass-derived pyrolysis oil effluent. The first deoxygenating catalyst comprises a neutral catalyst support, nickel, cobalt, and molybdenum. The first deoxygenating catalyst comprises nickel in an amount calculated as an oxide of from about 0.1 to about 1.5 wt. %.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 6, 2012
    Applicant: UOP LLC
    Inventors: Thomas Traynor, Timothy A. Brandvold, Jennifer F. Abrahamian
  • Patent number: 8324438
    Abstract: A process for producing at least one blended fuel from a paraffin rich component and a cyclic rich component, where each of the components are generated from a renewable feedstock, is presented. The paraffin rich component is generated from glycerides and free fatty acids in feedstocks such as plant and animal oils. The cyclic rich component is generated from biomass derived pyrolysis oil. The source of the animal or plant oil and the biomass may be the same renewable source.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: December 4, 2012
    Assignee: UOP LLC
    Inventors: Timothy A. Brandvold, Michael J. McCall
  • Patent number: 8314275
    Abstract: A process for stabilizing pyrolysis oil has been developed. The process involves heating the pyrolysis oil at a temperature of about 40° C. to about 85° C. under a reducing atmosphere for a time to stabilize the oil. The reducing atmosphere or gas is preferably hydrogen.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: November 20, 2012
    Assignee: UOP LLC
    Inventor: Timothy A. Brandvold
  • Patent number: 8314267
    Abstract: Catalytic processes for the conversion of 2,5-dimethyl furan (DMF) to para-xylene are described. Para-xylene is a key product that is currently obtained commercially from petroleum sources. However, it has now been determined that the cycloaddition of ethylene to DMF provides an alternative route to para-xylene. Advantageously, the DMF starting material for the processes may be synthesized from carbohydrates (e.g., glucose or fructose), thereby providing a pathway that relies at least partly, if not completely, on renewable feedstocks.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: November 20, 2012
    Assignee: UOP LLC
    Inventor: Timothy A. Brandvold
  • Publication number: 20120167454
    Abstract: Methods are disclosed for the treatment of feedstocks comprising a fatty acid- or triglyceride-containing component to remove contaminants that are detrimental to the conversion of such feedstocks to hydrocarbons, and especially biofuel fractions such as diesel or aviation biofuels. Contaminants contributing to the presence of trace elements in animal fats and/or plant oils, as components of feedstocks, hinder the ability to catalytically convert these feedstocks, for example by hydroprocessing, to biofuels.
    Type: Application
    Filed: December 19, 2011
    Publication date: July 5, 2012
    Applicant: UOP LLC
    Inventors: Timothy A. Brandvold, Daniel L. Ellig, Francis Stephen Lupton
  • Publication number: 20120023809
    Abstract: Methods for producing phase stable, reduced acid biomass-derived pyrolysis oils are provided. Biomass-derived pyrolysis oil having a determined water content no greater than about 30% by weight is provided. A base is mixed with the biomass-derived pyrolysis oil to produce reduced acid biomass-derived pyrolysis oil. A base is selected from an inorganic base or a nitrogen-containing base.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Applicant: UOP LLC
    Inventors: Mark B. Koch, Timothy A. Brandvold
  • Publication number: 20120017495
    Abstract: Methods for deoxygenating treated biomass-derived pyrolysis oil are provided. The treated biomass-derived pyrolysis oil is exposed to a catalyst having a neutral catalyst support such as a non-alumina metal oxide support, a theta alumina support, or both. The non-alumina metal oxide support may be a titanium oxide (TiO2) support, a silicon oxide support, a zirconia oxide (ZrO2) support, a niobium oxide (Nb2O5) support, or a support having a mixture of non-alumina metal oxides. The catalyst may include a noble metal or a Group VIII non-noble metal and a Group VIB non-noble metal on the neutral catalyst support. The treated biomass-derived pyrolysis oil is introduced into a hydroprocessing reactor in the presence of the catalyst under hydroprocessing conditions to produce low oxygen biomass-derived pyrolysis oil.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 26, 2012
    Applicant: UOP LLC
    Inventors: Thomas Traynor, Timothy A. Brandvold, Jennifer F. Abrahamian
  • Publication number: 20120017493
    Abstract: Methods for producing low oxygen biomass-derived pyrolysis oil are provided. Starting biomass-derived pyrolysis oil is deoxygenated by exposing the biomass-derived oil to a first catalyst in the presence of hydrogen-containing gas at first hydroprocessing conditions to produce a partially deoxygenated biomass-derived pyrolysis oil. The first catalyst has a neutral catalyst support. The partially deoxygenated biomass-derived pyrolysis oil is exposed to a second catalyst in the presence of additional hydrogen-containing gas at second hydroprocessing conditions to produce a hydrocarbon product. The biomass-derived pyrolysis oil may be esterified prior to deoxygenation. A portion of the low oxygen biomass-derived pyrolysis oil is recycled.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 26, 2012
    Applicant: UOP LLC
    Inventors: Thomas Traynor, Timothy A. Brandvold
  • Publication number: 20120017494
    Abstract: Processes for producing a low acid biomass-derived pyrolysis oil are provided that include pre-treating a biomass-derived pyrolysis oil to form a treated acid-containing biomass-derived pyrolysis oil. The processes also include esterifying the treated acid-containing biomass-derived pyrolysis oil in the presence of supercritical alcohol and a catalyst composition to form the low-acid biomass-derived pyrolysis oil, the catalyst composition comprising a material selected from the group consisting of an unsupported solid acid catalyst, an unsupported solid base catalyst, and a catalytic metal dispersed on a metal oxide support.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 26, 2012
    Applicant: UOP LLC
    Inventors: Thomas Traynor, Timothy A. Brandvold
  • Patent number: 8058492
    Abstract: A process for controlling the concurrent production of both diesel range hydrocarbons and aviation range hydrocarbons from renewable feedstocks such as plant oils and animal oils. The process involves determining the required specification of the desired products and the desired relative yields of the product that still meet the required specifications. The necessary isomerization and selective hydrocracking zone conditions are determined in order to create a mixture of paraffins which meet the required product specifications and yields. The necessary fractionation zone conditions are determined to separate the desired products.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: November 15, 2011
    Assignee: UOP LLC
    Inventors: Amarendra Anumakonda, Michael J. McCall, Timothy A. Brandvold, Joseph A. Kocal
  • Patent number: 8039682
    Abstract: A hydrocarbon product stream having hydrocarbons with boiling points in the aviation fuel range is produced from renewable feedstocks such as plant and animal oils. The process involves treating a renewable feedstock by hydrogenating, deoxygenating, isomerization, and selectively hydrocracking the feedstock to produce paraffinic hydrocarbons having from about 9 to about 16 carbon atoms and a high iso/normal ratio in a single reaction zone containing a multifunctional catalyst, or set of catalysts, having hydrogenation, deoxygenation, isomerization and selective hydrocracking functions.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: October 18, 2011
    Assignee: UOP LLC
    Inventors: Michael J. McCall, Joseph A. Kocal, Alakananda Bhattacharyya, Tom N. Kalnes, Timothy A. Brandvold
  • Publication number: 20110245551
    Abstract: The present invention involves a process for processing an acidic biorenewable feedstock comprising olefins, in which the acidic biorenewable feedstock is diluted with a deoxygenated feed to produce a diluted biorenewable feedstock and then is sent through a guard bed comprising a hydroprocessing catalyst to cause the olefins to be saturated with hydrogen and thereby to produce a treated biorenewable feedstock. This treated biorenewable feedstock can then be treated under standard hydroprocessing condition to produce an upgraded feedstock for transportation fuels.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: UOP LLC
    Inventors: Terry L. Marker, Timothy A. Brandvold, Charles P. Luebke
  • Publication number: 20110201855
    Abstract: Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 18, 2011
    Inventors: Richard Marinangeli, Timothy A. Brandvold, Joseph A. Kocal